File: Coordinate-Transformations.html

package info (click to toggle)
octave 7.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 130,464 kB
  • sloc: cpp: 332,823; ansic: 71,320; fortran: 20,963; objc: 8,562; sh: 8,115; yacc: 4,882; lex: 4,438; perl: 1,554; java: 1,366; awk: 1,257; makefile: 652; xml: 173
file content (218 lines) | stat: -rw-r--r-- 11,968 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.8, https://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Coordinate Transformations (GNU Octave (version 7.3.0))</title>

<meta name="description" content="Coordinate Transformations (GNU Octave (version 7.3.0))">
<meta name="keywords" content="Coordinate Transformations (GNU Octave (version 7.3.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta name="viewport" content="width=device-width,initial-scale=1">

<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Arithmetic.html" rel="up" title="Arithmetic">
<link href="Mathematical-Constants.html" rel="next" title="Mathematical Constants">
<link href="Rational-Approximations.html" rel="prev" title="Rational Approximations">
<style type="text/css">
<!--
a.copiable-anchor {visibility: hidden; text-decoration: none; line-height: 0em}
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
span:hover a.copiable-anchor {visibility: visible}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">


</head>

<body lang="en">
<div class="section" id="Coordinate-Transformations">
<div class="header">
<p>
Next: <a href="Mathematical-Constants.html" accesskey="n" rel="next">Mathematical Constants</a>, Previous: <a href="Rational-Approximations.html" accesskey="p" rel="prev">Rational Approximations</a>, Up: <a href="Arithmetic.html" accesskey="u" rel="up">Arithmetic</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<span id="Coordinate-Transformations-1"></span><h3 class="section">17.8 Coordinate Transformations</h3>

<span id="XREFcart2pol"></span><dl class="def">
<dt id="index-cart2pol"><span class="category">: </span><span><em>[<var>theta</var>, <var>r</var>] =</em> <strong>cart2pol</strong> <em>(<var>x</var>, <var>y</var>)</em><a href='#index-cart2pol' class='copiable-anchor'> &para;</a></span></dt>
<dt id="index-cart2pol-1"><span class="category">: </span><span><em>[<var>theta</var>, <var>r</var>, <var>z</var>] =</em> <strong>cart2pol</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>)</em><a href='#index-cart2pol-1' class='copiable-anchor'> &para;</a></span></dt>
<dt id="index-cart2pol-2"><span class="category">: </span><span><em>[<var>theta</var>, <var>r</var>] =</em> <strong>cart2pol</strong> <em>(<var>C</var>)</em><a href='#index-cart2pol-2' class='copiable-anchor'> &para;</a></span></dt>
<dt id="index-cart2pol-3"><span class="category">: </span><span><em>[<var>theta</var>, <var>r</var>, <var>z</var>] =</em> <strong>cart2pol</strong> <em>(<var>C</var>)</em><a href='#index-cart2pol-3' class='copiable-anchor'> &para;</a></span></dt>
<dd>
<p>Transform Cartesian coordinates to polar or cylindrical coordinates.
</p>
<p>The inputs <var>x</var>, <var>y</var> (, and <var>z</var>) must be the same shape, or
scalar.  If called with a single matrix argument then each row of <var>C</var>
represents the Cartesian coordinate pair (<var>x</var>, <var>y</var>) or triplet
(<var>x</var>, <var>y</var>, <var>z</var>).
</p>
<p>The outputs <var>theta</var>, <var>r</var> (, and <var>z</var>) match the shape of the
inputs.  For a matrix input <var>C</var> the outputs will be column vectors with
rows corresponding to the rows of the input matrix.
</p>
<p><var>theta</var> describes the angle relative to the positive x-axis measured in
the xy-plane.
</p>
<p><var>r</var> is the distance to the z-axis (0,&nbsp;0,&nbsp;z)<!-- /@w -->.
</p>
<p><var>z</var>, if present, is unchanged by the transformation.
</p>
<p>The coordinate transformation is computed using:
</p>

<div class="example">
<pre class="example"><var>theta</var> = arctan (<var>y</var> / <var>x</var>)
<var>r</var> = sqrt (<var>x</var>^2 + <var>y</var>^2)
<var>z</var> = <var>z</var>
</pre></div>


<p>Note: For <small>MATLAB</small> compatibility, this function no longer returns a full
coordinate matrix when called with a single return argument.
</p>
<p><strong>See also:</strong> <a href="#XREFpol2cart">pol2cart</a>, <a href="#XREFcart2sph">cart2sph</a>, <a href="#XREFsph2cart">sph2cart</a>.
</p></dd></dl>


<span id="XREFpol2cart"></span><dl class="def">
<dt id="index-pol2cart"><span class="category">: </span><span><em>[<var>x</var>, <var>y</var>] =</em> <strong>pol2cart</strong> <em>(<var>theta</var>, <var>r</var>)</em><a href='#index-pol2cart' class='copiable-anchor'> &para;</a></span></dt>
<dt id="index-pol2cart-1"><span class="category">: </span><span><em>[<var>x</var>, <var>y</var>, <var>z</var>] =</em> <strong>pol2cart</strong> <em>(<var>theta</var>, <var>r</var>, <var>z</var>)</em><a href='#index-pol2cart-1' class='copiable-anchor'> &para;</a></span></dt>
<dt id="index-pol2cart-2"><span class="category">: </span><span><em>[<var>x</var>, <var>y</var>] =</em> <strong>pol2cart</strong> <em>(<var>P</var>)</em><a href='#index-pol2cart-2' class='copiable-anchor'> &para;</a></span></dt>
<dt id="index-pol2cart-3"><span class="category">: </span><span><em>[<var>x</var>, <var>y</var>, <var>z</var>] =</em> <strong>pol2cart</strong> <em>(<var>P</var>)</em><a href='#index-pol2cart-3' class='copiable-anchor'> &para;</a></span></dt>
<dd><p>Transform polar or cylindrical coordinates to Cartesian coordinates.
</p>
<p>The inputs <var>theta</var>, <var>r</var>, (and <var>z</var>) must be the same shape, or
scalar.  If called with a single matrix argument then each row of <var>P</var>
represents the polar coordinate pair (<var>theta</var>, <var>r</var>) or the
cylindrical triplet (<var>theta</var>, <var>r</var>, <var>z</var>).
</p>
<p>The outputs <var>x</var>, <var>y</var> (, and <var>z</var>) match the shape of the inputs.
For a matrix input <var>P</var> the outputs will be column vectors with rows
corresponding to the rows of the input matrix.
</p>
<p><var>theta</var> describes the angle relative to the positive x-axis measured in
the xy-plane.
</p>
<p><var>r</var> is the distance to the z-axis (0,&nbsp;0,&nbsp;z)<!-- /@w -->.
</p>
<p><var>z</var>, if present, is unchanged by the transformation.
</p>
<p>The coordinate transformation is computed using:
</p>

<div class="example">
<pre class="example"><var>x</var> = <var>r</var> * cos (<var>theta</var>)
<var>y</var> = <var>r</var> * sin (<var>theta</var>)
<var>z</var> = <var>z</var>
</pre></div>

<p>Note: For <small>MATLAB</small> compatibility, this function no longer returns a full
coordinate matrix when called with a single return argument.
</p>
<p><strong>See also:</strong> <a href="#XREFcart2pol">cart2pol</a>, <a href="#XREFsph2cart">sph2cart</a>, <a href="#XREFcart2sph">cart2sph</a>.
</p></dd></dl>


<span id="XREFcart2sph"></span><dl class="def">
<dt id="index-cart2sph"><span class="category">: </span><span><em>[<var>theta</var>, <var>phi</var>, <var>r</var>] =</em> <strong>cart2sph</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>)</em><a href='#index-cart2sph' class='copiable-anchor'> &para;</a></span></dt>
<dt id="index-cart2sph-1"><span class="category">: </span><span><em>[<var>theta</var>, <var>phi</var>, <var>r</var>] =</em> <strong>cart2sph</strong> <em>(<var>C</var>)</em><a href='#index-cart2sph-1' class='copiable-anchor'> &para;</a></span></dt>
<dd><p>Transform Cartesian coordinates to spherical coordinates.
</p>
<p>The inputs <var>x</var>, <var>y</var>, and <var>z</var> must be the same shape, or scalar.
If called with a single matrix argument then each row of <var>C</var> must
represent a Cartesian coordinate triplet (<var>x</var>, <var>y</var>, <var>z</var>).
</p>
<p>The outputs <var>theta</var>, <var>phi</var>, <var>r</var> match the shape of the inputs.
For a matrix input <var>C</var> the outputs will be column vectors with rows
corresponding to the rows of the input matrix.
</p>
<p><var>theta</var> describes the azimuth angle relative to the positive x-axis
measured in the xy-plane.
</p>
<p><var>phi</var> is the elevation angle measured relative to the xy-plane.
</p>
<p><var>r</var> is the distance to the origin (0,&nbsp;0,&nbsp;0)<!-- /@w -->.
</p>
<p>The coordinate transformation is computed using:
</p>

<div class="example">
<pre class="example"><var>theta</var> = arctan (<var>y</var> / <var>x</var>)
<var>phi</var> = arctan (<var>z</var> / sqrt (<var>x</var>^2 + <var>y</var>^2))
<var>r</var> = sqrt (<var>x</var>^2 + <var>y</var>^2 + <var>z</var>^2)
</pre></div>


<p>Note: For <small>MATLAB</small> compatibility, this function no longer returns a full
coordinate matrix when called with a single return argument.
</p>
<p><strong>See also:</strong> <a href="#XREFsph2cart">sph2cart</a>, <a href="#XREFcart2pol">cart2pol</a>, <a href="#XREFpol2cart">pol2cart</a>.
</p></dd></dl>


<span id="XREFsph2cart"></span><dl class="def">
<dt id="index-sph2cart"><span class="category">: </span><span><em>[<var>x</var>, <var>y</var>, <var>z</var>] =</em> <strong>sph2cart</strong> <em>(<var>theta</var>, <var>phi</var>, <var>r</var>)</em><a href='#index-sph2cart' class='copiable-anchor'> &para;</a></span></dt>
<dt id="index-sph2cart-1"><span class="category">: </span><span><em>[<var>x</var>, <var>y</var>, <var>z</var>] =</em> <strong>sph2cart</strong> <em>(<var>S</var>)</em><a href='#index-sph2cart-1' class='copiable-anchor'> &para;</a></span></dt>
<dd><p>Transform spherical coordinates to Cartesian coordinates.
</p>
<p>The inputs <var>theta</var>, <var>phi</var>, and <var>r</var> must be the same shape, or
scalar.  If called with a single matrix argument then each row of <var>S</var>
must represent a spherical coordinate triplet (<var>theta</var>, <var>phi</var>,
<var>r</var>).
</p>
<p>The outputs <var>x</var>, <var>y</var>, <var>z</var> match the shape of the inputs.  For a
matrix input <var>S</var> the outputs are column vectors with rows corresponding
to the rows of the input matrix.
</p>
<p><var>theta</var> describes the azimuth angle relative to the positive x-axis
measured in the xy-plane.
</p>
<p><var>phi</var> is the elevation angle measured relative to the xy-plane.
</p>
<p><var>r</var> is the distance to the origin (0,&nbsp;0,&nbsp;0)<!-- /@w -->.
</p>
<p>The coordinate transformation is computed using:
</p>

<div class="example">
<pre class="example"><var>x</var> = r * cos (<var>phi</var>) * cos (<var>theta</var>)
<var>y</var> = r * cos (<var>phi</var>) * sin (<var>theta</var>)
<var>z</var> = r * sin (<var>phi</var>)
</pre></div>

<p>Note: For <small>MATLAB</small> compatibility, this function no longer returns a full
coordinate matrix when called with a single return argument.
</p>
<p><strong>See also:</strong> <a href="#XREFcart2sph">cart2sph</a>, <a href="#XREFpol2cart">pol2cart</a>, <a href="#XREFcart2pol">cart2pol</a>.
</p></dd></dl>


</div>
<hr>
<div class="header">
<p>
Next: <a href="Mathematical-Constants.html">Mathematical Constants</a>, Previous: <a href="Rational-Approximations.html">Rational Approximations</a>, Up: <a href="Arithmetic.html">Arithmetic</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>