1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.8, https://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Interpolation on Scattered Data (GNU Octave (version 7.3.0))</title>
<meta name="description" content="Interpolation on Scattered Data (GNU Octave (version 7.3.0))">
<meta name="keywords" content="Interpolation on Scattered Data (GNU Octave (version 7.3.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta name="viewport" content="width=device-width,initial-scale=1">
<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Geometry.html" rel="up" title="Geometry">
<link href="Vector-Rotation-Matrices.html" rel="next" title="Vector Rotation Matrices">
<link href="Convex-Hull.html" rel="prev" title="Convex Hull">
<style type="text/css">
<!--
a.copiable-anchor {visibility: hidden; text-decoration: none; line-height: 0em}
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
span:hover a.copiable-anchor {visibility: visible}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<div class="section" id="Interpolation-on-Scattered-Data">
<div class="header">
<p>
Next: <a href="Vector-Rotation-Matrices.html" accesskey="n" rel="next">Vector Rotation Matrices</a>, Previous: <a href="Convex-Hull.html" accesskey="p" rel="prev">Convex Hull</a>, Up: <a href="Geometry.html" accesskey="u" rel="up">Geometry</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<span id="Interpolation-on-Scattered-Data-1"></span><h3 class="section">30.4 Interpolation on Scattered Data</h3>
<p>An important use of the Delaunay tessellation is that it can be used to
interpolate from scattered data to an arbitrary set of points. To do
this the N-simplex of the known set of points is calculated with
<code>delaunay</code> or <code>delaunayn</code>. Then the simplices in to which the
desired points are found are identified. Finally the vertices of the simplices
are used to interpolate to the desired points. The functions that perform this
interpolation are <code>griddata</code>, <code>griddata3</code> and <code>griddatan</code>.
</p>
<span id="XREFgriddata"></span><dl class="def">
<dt id="index-griddata"><span class="category">: </span><span><em><var>zi</var> =</em> <strong>griddata</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>xi</var>, <var>yi</var>)</em><a href='#index-griddata' class='copiable-anchor'> ¶</a></span></dt>
<dt id="index-griddata-1"><span class="category">: </span><span><em><var>zi</var> =</em> <strong>griddata</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>xi</var>, <var>yi</var>, <var>method</var>)</em><a href='#index-griddata-1' class='copiable-anchor'> ¶</a></span></dt>
<dt id="index-griddata-2"><span class="category">: </span><span><em>[<var>xi</var>, <var>yi</var>, <var>zi</var>] =</em> <strong>griddata</strong> <em>(…)</em><a href='#index-griddata-2' class='copiable-anchor'> ¶</a></span></dt>
<dt id="index-griddata-3"><span class="category">: </span><span><em><var>vi</var> =</em> <strong>griddata</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>v</var>, <var>xi</var>, <var>yi</var>, <var>zi</var>)</em><a href='#index-griddata-3' class='copiable-anchor'> ¶</a></span></dt>
<dt id="index-griddata-4"><span class="category">: </span><span><em><var>vi</var> =</em> <strong>griddata</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>v</var>, <var>xi</var>, <var>yi</var>, <var>zi</var>, <var>method</var>)</em><a href='#index-griddata-4' class='copiable-anchor'> ¶</a></span></dt>
<dt id="index-griddata-5"><span class="category">: </span><span><em><var>vi</var> =</em> <strong>griddata</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>v</var>, <var>xi</var>, <var>yi</var>, <var>zi</var>, <var>method</var>, <var>options</var>)</em><a href='#index-griddata-5' class='copiable-anchor'> ¶</a></span></dt>
<dd>
<p>Interpolate irregular 2-D and 3-D source data at specified points.
</p>
<p>For 2-D interpolation, the inputs <var>x</var> and <var>y</var> define the points
where the function <code><var>z</var> = f (<var>x</var>, <var>y</var>)</code> is evaluated.
The inputs <var>x</var>, <var>y</var>, <var>z</var> are either vectors of the same length,
or the unequal vectors <var>x</var>, <var>y</var> are expanded to a 2-D grid with
<code>meshgrid</code> and <var>z</var> is a 2-D matrix matching the resulting size of
the X-Y grid.
</p>
<p>The interpolation points are (<var>xi</var>, <var>yi</var>). If, and only if,
<var>xi</var> is a row vector and <var>yi</var> is a column vector, then
<code>meshgrid</code> will be used to create a mesh of interpolation points.
</p>
<p>For 3-D interpolation, the inputs <var>x</var>, <var>y</var>, and <var>z</var> define the
points where the function <code><var>v</var> = f (<var>x</var>, <var>y</var>, <var>z</var>)</code>
is evaluated. The inputs <var>x</var>, <var>y</var>, <var>z</var> are either vectors of
the same length, or if they are of unequal length, then they are expanded to
a 3-D grid with <code>meshgrid</code>. The size of the input <var>v</var> must match
the size of the original data, either as a vector or a matrix.
</p>
<p>The optional input interpolation <var>method</var> can be <code>"nearest"</code>,
<code>"linear"</code>, or for 2-D data <code>"v4"</code>. When the method is
<code>"nearest"</code>, the output <var>vi</var> will be the closest point in the
original data (<var>x</var>, <var>y</var>, <var>z</var>) to the query point (<var>xi</var>,
<var>yi</var>, <var>zi</var>). When the method is <code>"linear"</code>, the output
<var>vi</var> will be a linear interpolation between the two closest points in
the original source data in each dimension. For 2-D cases only, the
<code>"v4"</code> method is also available which implements a biharmonic spline
interpolation. If <var>method</var> is omitted or empty, it defaults to
<code>"linear"</code>.
</p>
<p>For 3-D interpolation, the optional argument <var>options</var> is passed
directly to Qhull when computing the Delaunay triangulation used for
interpolation. For more information on the defaults and how to pass
different values, see <a href="Delaunay-Triangulation.html#XREFdelaunayn"><code>delaunayn</code></a>.
</p>
<p>Programming Notes: If the input is complex the real and imaginary parts
are interpolated separately. Interpolation is normally based on a
Delaunay triangulation. Any query values outside the convex hull of the
input points will return <code>NaN</code>. However, the <code>"v4"</code> method does
not use the triangulation and will return values outside the original data
(extrapolation).
</p>
<p><strong>See also:</strong> <a href="#XREFgriddata3">griddata3</a>, <a href="#XREFgriddatan">griddatan</a>, <a href="Delaunay-Triangulation.html#XREFdelaunay">delaunay</a>.
</p></dd></dl>
<span id="XREFgriddata3"></span><dl class="def">
<dt id="index-griddata3"><span class="category">: </span><span><em><var>vi</var> =</em> <strong>griddata3</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>v</var>, <var>xi</var>, <var>yi</var>, <var>zi</var>)</em><a href='#index-griddata3' class='copiable-anchor'> ¶</a></span></dt>
<dt id="index-griddata3-1"><span class="category">: </span><span><em><var>vi</var> =</em> <strong>griddata3</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>v</var>, <var>xi</var>, <var>yi</var>, <var>zi</var>, <var>method</var>)</em><a href='#index-griddata3-1' class='copiable-anchor'> ¶</a></span></dt>
<dt id="index-griddata3-2"><span class="category">: </span><span><em><var>vi</var> =</em> <strong>griddata3</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>v</var>, <var>xi</var>, <var>yi</var>, <var>zi</var>, <var>method</var>, <var>options</var>)</em><a href='#index-griddata3-2' class='copiable-anchor'> ¶</a></span></dt>
<dd>
<p>Interpolate irregular 3-D source data at specified points.
</p>
<p>The inputs <var>x</var>, <var>y</var>, and <var>z</var> define the points where the
function <code><var>v</var> = f (<var>x</var>, <var>y</var>, <var>z</var>)</code> is evaluated. The
inputs <var>x</var>, <var>y</var>, <var>z</var> are either vectors of the same length, or
if they are of unequal length, then they are expanded to a 3-D grid with
<code>meshgrid</code>. The size of the input <var>v</var> must match the size of the
original data, either as a vector or a matrix.
</p>
<p>The interpolation points are specified by <var>xi</var>, <var>yi</var>, <var>zi</var>.
</p>
<p>The optional input interpolation <var>method</var> can be <code>"nearest"</code> or
<code>"linear"</code>. When the method is <code>"nearest"</code>, the output <var>vi</var>
will be the closest point in the original data (<var>x</var>, <var>y</var>, <var>z</var>)
to the query point (<var>xi</var>, <var>yi</var>, <var>zi</var>). When the method is
<code>"linear"</code>, the output <var>vi</var> will be a linear interpolation between
the two closest points in the original source data in each dimension.
If <var>method</var> is omitted or empty, it defaults to <code>"linear"</code>.
</p>
<p>The optional argument <var>options</var> is passed directly to Qhull when
computing the Delaunay triangulation used for interpolation. See
<code>delaunayn</code> for information on the defaults and how to pass different
values.
</p>
<p>Programming Notes: If the input is complex the real and imaginary parts
are interpolated separately. Interpolation is based on a Delaunay
triangulation and any query values outside the convex hull of the input
points will return <code>NaN</code>.
</p>
<p><strong>See also:</strong> <a href="#XREFgriddata">griddata</a>, <a href="#XREFgriddatan">griddatan</a>, <a href="Delaunay-Triangulation.html#XREFdelaunayn">delaunayn</a>.
</p></dd></dl>
<span id="XREFgriddatan"></span><dl class="def">
<dt id="index-griddatan"><span class="category">: </span><span><em><var>yi</var> =</em> <strong>griddatan</strong> <em>(<var>x</var>, <var>y</var>, <var>xi</var>)</em><a href='#index-griddatan' class='copiable-anchor'> ¶</a></span></dt>
<dt id="index-griddatan-1"><span class="category">: </span><span><em><var>yi</var> =</em> <strong>griddatan</strong> <em>(<var>x</var>, <var>y</var>, <var>xi</var>, <var>method</var>)</em><a href='#index-griddatan-1' class='copiable-anchor'> ¶</a></span></dt>
<dt id="index-griddatan-2"><span class="category">: </span><span><em><var>yi</var> =</em> <strong>griddatan</strong> <em>(<var>x</var>, <var>y</var>, <var>xi</var>, <var>method</var>, <var>options</var>)</em><a href='#index-griddatan-2' class='copiable-anchor'> ¶</a></span></dt>
<dd>
<p>Interpolate irregular source data <var>x</var>, <var>y</var> at points specified by
<var>xi</var>.
</p>
<p>The input <var>x</var> is an MxN matrix representing M points in an N-dimensional
space. The input <var>y</var> is a single-valued column vector (Mx1)
representing a function evaluated at the points <var>x</var>, i.e.,
<code><var>y</var> = fcn (<var>x</var>)</code>. The input <var>xi</var> is a list of points
for which the function output <var>yi</var> should be approximated through
interpolation. <var>xi</var> must have the same number of columns (<var>N</var>)
as <var>x</var> so that the dimensionality matches.
</p>
<p>The optional input interpolation <var>method</var> can be <code>"nearest"</code> or
<code>"linear"</code>. When the method is <code>"nearest"</code>, the output <var>yi</var>
will be the closest point in the original data <var>x</var> to the query point
<var>xi</var>. When the method is <code>"linear"</code>, the output <var>yi</var> will
be a linear interpolation between the two closest points in the original
source data. If <var>method</var> is omitted or empty, it defaults to
<code>"linear"</code>.
</p>
<p>The optional argument <var>options</var> is passed directly to Qhull when
computing the Delaunay triangulation used for interpolation. See
<code>delaunayn</code> for information on the defaults and how to pass different
values.
</p>
<p>Example
</p>
<div class="example">
<pre class="example">## Evaluate sombrero() function at irregular data points
x = 16*gallery ("uniformdata", [200,1], 1) - 8;
y = 16*gallery ("uniformdata", [200,1], 11) - 8;
z = sin (sqrt (x.^2 + y.^2)) ./ sqrt (x.^2 + y.^2);
## Create a regular grid and interpolate data
[xi, yi] = ndgrid (linspace (-8, 8, 50));
zi = griddatan ([x, y], z, [xi(:), yi(:)]);
zi = reshape (zi, size (xi));
## Plot results
clf ();
plot3 (x, y, z, "or");
hold on
surf (xi, yi, zi);
legend ("Original Data", "Interpolated Data");
</pre></div>
<p>Programming Notes: If the input is complex the real and imaginary parts
are interpolated separately. Interpolation is based on a Delaunay
triangulation and any query values outside the convex hull of the input
points will return <code>NaN</code>. For 2-D and 3-D data additional
interpolation methods are available by using the <code>griddata</code> function.
</p>
<p><strong>See also:</strong> <a href="#XREFgriddata">griddata</a>, <a href="#XREFgriddata3">griddata3</a>, <a href="Delaunay-Triangulation.html#XREFdelaunayn">delaunayn</a>.
</p></dd></dl>
<p>An example of the use of the <code>griddata</code> function is
</p>
<div class="example">
<pre class="example">rand ("state", 1);
x = 2*rand (1000,1) - 1;
y = 2*rand (size (x)) - 1;
z = sin (2*(x.^2+y.^2));
[xx,yy] = meshgrid (linspace (-1,1,32));
zz = griddata (x, y, z, xx, yy);
mesh (xx, yy, zz);
</pre></div>
<p>that interpolates from a random scattering of points, to a uniform grid.
The output of the above can be seen in <a href="#fig_003agriddata">Figure 30.6</a>.
</p>
<div class="float"><span id="fig_003agriddata"></span>
<div align="center"><img src="griddata.png" alt="griddata">
</div>
<div class="float-caption"><p><strong>Figure 30.6: </strong>Interpolation from a scattered data to a regular grid</p></div></div>
</div>
<hr>
<div class="header">
<p>
Next: <a href="Vector-Rotation-Matrices.html">Vector Rotation Matrices</a>, Previous: <a href="Convex-Hull.html">Convex Hull</a>, Up: <a href="Geometry.html">Geometry</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|