File: integral.m

package info (click to toggle)
octave 7.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 130,464 kB
  • sloc: cpp: 332,823; ansic: 71,320; fortran: 20,963; objc: 8,562; sh: 8,115; yacc: 4,882; lex: 4,438; perl: 1,554; java: 1,366; awk: 1,257; makefile: 652; xml: 173
file content (319 lines) | stat: -rw-r--r-- 11,736 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
########################################################################
##
## Copyright (C) 2017-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{q} =} integral (@var{f}, @var{a}, @var{b})
## @deftypefnx {} {@var{q} =} integral (@var{f}, @var{a}, @var{b}, @var{prop}, @var{val}, @dots{})
##
## Numerically evaluate the integral of @var{f} from @var{a} to @var{b} using
## adaptive quadrature.
##
## @code{integral} is a wrapper for @code{quadcc} (general real-valued, scalar
## integrands and limits), @code{quadgk} (integrals with specified integration
## paths), and @code{quadv} (array-valued integrands) that is intended to
## provide @sc{matlab} compatibility.  More control of the numerical
## integration may be achievable by calling the various quadrature functions
## directly.
##
## @var{f} is a function handle, inline function, or string containing the name
## of the function to evaluate.  The function @var{f} must be vectorized and
## return a vector of output values when given a vector of input values.
##
## @var{a} and @var{b} are the lower and upper limits of integration.  Either
## or both limits may be infinite or contain weak end singularities.  If either
## or both limits are complex, @code{integral} will perform a straight line
## path integral.  Alternatively, a complex domain path can be specified using
## the @qcode{"Waypoints"} option (see below).
##
## Additional optional parameters can be specified using
## @qcode{"@var{property}", @var{value}} pairs.  Valid properties are:
##
## @table @code
## @item Waypoints
## Specifies points to be used in defining subintervals of the quadrature
## algorithm, or if @var{a}, @var{b}, or @var{waypoints} are complex then
## the quadrature is calculated as a contour integral along a piecewise
## continuous path.  For more detail, @pxref{XREFquadgk,,@code{quadgk}}.
##
## @item ArrayValued
## @code{integral} expects @var{f} to return a scalar value unless
## @var{arrayvalued} is specified as true.  This option will cause
## @code{integral} to perform the integration over the entire array and return
## @var{q} with the same dimensions as returned by @var{f}.  For more detail
## @pxref{XREFquadv,,@code{quadv}}.
##
## @item AbsTol
## Define the absolute error tolerance for the quadrature.  The default
## absolute tolerance is 1e-10 (1e-5 for single).
##
## @item RelTol
## Define the relative error tolerance for the quadrature.  The default
## relative tolerance is 1e-6 (1e-4 for single).
## @end table
##
## Adaptive quadrature is used to minimize the estimate of error until the
## following is satisfied:
## @tex
## $$error \leq \max \left( AbsTol, RelTol\cdot\vert q\vert \right)$$
## @end tex
## @ifnottex
##
## @example
## @group
##   @var{error} <= max (@var{AbsTol}, @var{RelTol}*|@var{q}|).
## @end group
## @end example
##
## @end ifnottex
##
## Known @sc{matlab} incompatibilities:
##
## @enumerate
## @item
## If tolerances are left unspecified, and any integration limits or waypoints
## are of type @code{single}, then Octave's integral functions automatically
## reduce the default absolute and relative error tolerances as specified
## above.  If tighter tolerances are desired they must be specified.
## @sc{matlab} leaves the tighter tolerances appropriate for @code{double}
## inputs in place regardless of the class of the integration limits.
##
## @item
## As a consequence of using @code{quadcc}, @code{quadgk}, and @code{quadv},
## certain option combinations are not supported.  Currently,
## @qcode{"ArrayValued"} cannot be combined with @qcode{"RelTol"} or
## @qcode{"Waypoints"}.
## @end enumerate
##
## @seealso{integral2, integral3, quad, quadgk, quadv, quadl, quadcc, trapz,
##          dblquad, triplequad}
## @end deftypefn

function q = integral (f, a, b, varargin)

  if (nargin < 3 || (mod (nargin, 2) == 0))
    print_usage ();
  endif

  ## quadcc can't handle complex limits or integrands, but quadgk & quadv can.
  ## Check for simple cases of complex limits and integrand.
  f_is_complex = false;
  if (iscomplex (a) || iscomplex (b))
    f_is_complex = true;
  elseif (iscomplex (feval (f, a)) || iscomplex (feval (f, b)))
    f_is_complex = true;
  endif

  if (nargin == 3)
    ## Pass the simplest case directly to general integrator.
    ## Let quadcc function handle input checks on function and limits.
    if (! f_is_complex)
      try
        q = quadcc (f, a, b);
      catch quaderror
        if (strcmp (quaderror.message,
                    "quadcc: integrand F must return a single, real-valued vector"))
          q = quadgk (f, a, b);
        else
          error (quaderror.message);
        endif
      end_try_catch

    else
      ## Complex-valued integral
      q = quadgk (f, a, b);
    endif

  else
    ## Parse options to determine how to call integrator.
    abstol = [];
    reltol = [];
    waypoints = [];
    arrayvalued = false;

    idx = 1;
    while (idx < nargin - 3)
      prop = varargin{idx++};
      if (! ischar (prop))
        error ("integral: property PROP must be a string");
      endif

      switch (tolower (prop))
        case "reltol"
          reltol = varargin{idx++};
        case "abstol"
          abstol = varargin{idx++};
        case "waypoints"
          waypoints = varargin{idx++}(:);
        case "arrayvalued"
          arrayvalued = varargin{idx++};
        otherwise
          error ("integral: unknown property '%s'", prop);
      endswitch
    endwhile

    issingle = (isa (a, "single") || isa (b, "single")
                || isa (waypoints, "single"));

    if (arrayvalued)
      ## Pass vector-valued function to quadv, checking for conflicting params

      ## FIXME: Replace warning when have array compatible call with waypoints
      if (! isempty (waypoints))
        warning (["integral: array-valued quadrature routine currently ", ...
                 "unable to handle WayPoints.  WayPoints are ignored."]);
      endif

      ## FIXME: Remove warning once we have reltol compatible arrayval'd quadfn
      if (! isempty (reltol))
        warning (["integral: array-valued quadrature only accepts AbsTol.", ...
                 "  RelTol ignored."]);
      endif
      if (isempty (abstol))
        abstol = ifelse (issingle, 1e-5, 1e-10);
      endif

      q = quadv (f, a, b, abstol);

    else
      if (isempty (abstol))
        abstol = ifelse (issingle, 1e-5, 1e-10);
      endif
      if (isempty (reltol))
        reltol = ifelse (issingle, 1e-4, 1e-6);
      endif

      if (! isempty (waypoints))
        q = quadgk (f, a, b, "AbsTol", abstol, "RelTol", reltol,
                             "WayPoints", waypoints);
      else
        if (! f_is_complex)
          try
            q = quadcc (f, a, b, [abstol, reltol]);
          catch quaderror
            if (strcmp (quaderror.message,
                        "quadcc: integrand F must return a single, real-valued vector"))
              q = quadgk (f, a, b, "AbsTol", abstol, "RelTol", reltol);
            else
              error (quaderror.message);
            endif
          end_try_catch
        else
          ## Complex-valued integral
          q = quadgk (f, a, b, "AbsTol", abstol, "RelTol", reltol);
        endif
      endif
    endif
  endif

endfunction


## Matlab compatibility tests
%!test
%! f = @(x) exp (-x.^2) .* log (x).^2;
%! emgamma = 0.57721566490153286;
%! exact = (sqrt (pi)*(8*log (2)^2+8*emgamma*log (2)+pi^2+2*emgamma^2))/16;
%! assert (integral (f, 0, Inf), exact, -1e-6);
%! assert (integral (f, 0, Inf, "RelTol", 1e-12), exact, -1e-12);

%!test  # with parameter
%! f = @(x, c) 1 ./ (x.^3 - 2*x - c);
%! assert (integral (@(x) f(x,5), 0, 2), -0.4605015338467329, 1e-10);

%!test  # with tolerances
%! f = @(x) log (x);
%! assert (integral (@(x) f(x), 0, 1, "AbsTol", 1e-6), -1, 1e-6);

%!test  # waypoints
%! f = @(x) 1./(2.*x-1);
%! assert (integral (f, 0, 0, "Waypoints", [1+1i, 1-1i]), -pi*1i, 1e-10);

%!test  # an array-valued function
%! f = @(x) sin ((1:5)*x);
%! assert (integral (f, 0, 1, "ArrayValued", true), 1./[1:5]-cos(1:5)./[1:5],
%!         1e-10);

%!test  # test single input/output
%! assert (integral (@sin, 0, 1), cos (0)-cos (1), 1e-10);
%! assert (class (integral (@sin, single (0), 1)), "single");
%! assert (class (integral (@sin, 0, single (1))), "single");
%! assert (class (integral (@sin, single (0), single (1))), "single");
%! assert (integral (@sin, 0, 1, "Waypoints", 0.5), cos (0)-cos (1), 1e-10);
%! assert (class (integral (@sin, 0, 1, "Waypoints", single (0.5))), "single");
%! assert (class (integral (@sin, single (0), 1, "Waypoints", 0.5)), "single");
%! assert (class (integral (@sin, 0, single (1), "Waypoints", 0.5)), "single");

%!test  # test complex argument handling
%! f = @(x) round (exp (i*x));
%! assert (integral (f, 0, pi), quadgk (f, 0, pi), eps);
%! assert (integral (f, -1, 1), 2, 5*eps);
%! assert (integral (@sin, -i, i), 0, eps);
%! assert (1.5 * integral (@sqrt, -1, 0), i, eps);

%!test
%! f = @(x) x.^5 .* exp (-x) .* sin (x);
%! assert (integral (f, 0, inf, "RelTol", 1e-8, "AbsTol", 1e-12), -15, -1e-8);

## tests from quadcc
%!assert (integral (@sin, -pi, pi), 0, 1e-10)
%!assert (integral (inline ("sin"), -pi, pi), 0, 1e-10)
%!assert (integral ("sin", -pi, pi), 0, 1e-10)
%!assert (integral (@sin, -pi, 0), -2, 1e-10)
%!assert (integral (@sin, 0, pi), 2, 1e-10)
%!assert (integral (@(x) 1./(sqrt (x).*(x+1)), 0, Inf), pi, -1e-6)
%!assert (integral (@(x) 1./(sqrt (x).*(x+1)), 0, Inf,
%!                  "AbsTol", 0, "RelTol", 1e-8),
%!        pi, -1e-8)
%!assert (integral (@(x) exp (-x .^ 2), -Inf, Inf), sqrt (pi), 1e-10)
%!assert (integral (@(x) exp (-x .^ 2), -Inf, 0), sqrt (pi)/2, 1e-10)

## tests from quadgk
%!assert (integral (@sin,-pi,pi, "WayPoints",0, "AbsTol",1e-6, "RelTol",1e-3),
%!        0, 1e-6)
%!assert (integral (@(x) abs (1 - x.^2), 0, 2, "Waypoints", 1), 2, 1e-10)
%!assert (integral (@(z) log (z),1+1i,1+1i, "WayPoints", [1-1i, -1,-1i, -1+1i]),
%!        complex (0, pi), 1e-10)

## tests from quadv
## Test vector-valued functions
%!assert (integral (@(x) [(sin (x)), (sin (2*x))], 0, pi, "ArrayValued", 1),
%!        [2, 0], 1e-10)

## Test matrix-valued functions
%!test
%! assert (integral (@(x) [x,x,x; x,exp(x),x; x,x,x], 0, 1, "ArrayValued", 1),
%!         [0.5,0.5,0.5; 0.5,(exp (1) - 1),0.5; 0.5,0.5,0.5], 1e-10);

## Test input validation
%!error integral (@sin)
%!error integral (@sin, 0)
%!error integral (@sin, 0, 1, 1e-6, true, 4)
%!error integral (@sin, 0, 1, "DummyArg")
%!error <property PROP must be a string> integral (@sin, 0, 1, 2, 3)
%!error <unknown property 'foo'> integral (@sin, 0, 1, "foo", 3)
%!error integral (@sin, 0, 1, "AbsTol", ones (2,2))
%!error integral (@sin, 0, 1, "AbsTol", -1)
%!error integral (@sin, 0, 1, "RelTol", ones (2,2))
%!error integral (@sin, 0, 1, "RelTol", -1)