1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
########################################################################
##
## Copyright (C) 2007-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{T} =} delaunayn (@var{pts})
## @deftypefnx {} {@var{T} =} delaunayn (@var{pts}, @var{options})
## Compute the Delaunay triangulation for an N-dimensional set of points.
##
## The Delaunay triangulation is a tessellation of the convex hull of a set of
## points such that no N-sphere defined by the N-triangles contains any other
## points from the set.
##
## The input matrix @var{pts} of size [n, dim] contains n points in a space of
## dimension dim. The return matrix @var{T} has size [m, dim+1]. Each row of
## @var{T} contains a set of indices back into the original set of points
## @var{pts} which describes a simplex of dimension dim. For example, a 2-D
## simplex is a triangle and 3-D simplex is a tetrahedron.
##
## An optional second argument, which must be a string or cell array of
## strings, contains options passed to the underlying qhull command. See the
## documentation for the Qhull library for details
## @url{http://www.qhull.org/html/qh-quick.htm#options}.
## The default options depend on the dimension of the input:
##
## @itemize
## @item 2-D and 3-D: @var{options} = @code{@{"Qt", "Qbb", "Qc"@}}
##
## @item 4-D and higher: @var{options} = @code{@{"Qt", "Qbb", "Qc", "Qx"@}}
## @end itemize
##
## If Qhull fails for 2-D input the triangulation is attempted again with
## the options @code{@{"Qt", "Qbb", "Qc", "Qz"@}} which may result in
## reduced accuracy.
##
## If @var{options} is not present or @code{[]} then the default arguments are
## used. Otherwise, @var{options} replaces the default argument list.
## To append user options to the defaults it is necessary to repeat the
## default arguments in @var{options}. Use a null string to pass no arguments.
##
## @seealso{delaunay, convhulln, voronoin, trimesh, tetramesh}
## @end deftypefn
function T = delaunayn (pts, varargin)
if (nargin < 1)
print_usage ();
endif
if (isempty (varargin) || isempty (varargin{1}))
try
T = __delaunayn__ (pts);
catch err
if (columns (pts) <= 2)
T = __delaunayn__ (pts, "Qt Qbb Qc Qz");
else
rethrow (err);
endif
end_try_catch
else
T = __delaunayn__ (pts, varargin{:});
endif
if (isa (pts, "single"))
tol = 1e3 * eps ("single");
else
tol = 1e3 * eps;
endif
## Try to remove the zero volume simplices. The volume of the i-th simplex is
## given by abs(det(pts(T(i,1:end-1),:)-pts(T(i,2:end),:)))/factorial(ndim+1)
## (reference http://en.wikipedia.org/wiki/Simplex). Any simplex with a
## relative volume less than some arbitrary criteria is rejected. The
## criteria we use is the volume of the simplex corresponding to an
## orthogonal simplex is equal edge length all equal to the edge length of
## the original simplex. If the relative volume is 1e3*eps then the simplex
## is rejected. Note division of the two volumes means that the factor
## factorial(ndim+1) is dropped.
[nt, nd] = size (T);
if (nd == 3)
## 2-D case
np = rows (pts);
ptsz = [pts, zeros(np, 1)];
p1 = ptsz(T(:,1), :);
p2 = ptsz(T(:,2), :);
p3 = ptsz(T(:,3), :);
p12 = p1 - p2;
p23 = p2 - p3;
det = cross (p12, p23, 2);
idx = abs (det (:,3) ./ sqrt (sumsq (p12, 2))) < tol & ...
abs (det (:,3) ./ sqrt (sumsq (p23, 2))) < tol;
else
## FIXME: Vectorize this for loop or convert delaunayn to .oct function
idx = [];
for i = 1:nt
X = pts(T(i,1:end-1),:) - pts(T(i,2:end),:);
if (abs (det (X)) / sqrt (sumsq (X, 2)) < tol)
idx(end+1) = i;
endif
endfor
endif
T(idx,:) = [];
endfunction
%!testif HAVE_QHULL
%! x = [-1, 0; 0, 1; 1, 0; 0, -1; 0, 0];
%! assert (sortrows (sort (delaunayn (x), 2)), [1,2,5;1,4,5;2,3,5;3,4,5]);
## Test 3-D input
%!testif HAVE_QHULL
%! x = [-1, -1, 1, 0, -1]; y = [-1, 1, 1, 0, -1]; z = [0, 0, 0, 1, 1];
%! assert (sortrows (sort (delaunayn ([x(:) y(:) z(:)]), 2)),
%! [1,2,3,4;1,2,4,5]);
## FIXME: Need tests for delaunayn
## Input validation tests
%!error <Invalid call> delaunayn ()
|