1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
########################################################################
##
## Copyright (C) 1994-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{y} =} polyval (@var{p}, @var{x})
## @deftypefnx {} {@var{y} =} polyval (@var{p}, @var{x}, [], @var{mu})
## @deftypefnx {} {[@var{y}, @var{dy}] =} polyval (@var{p}, @var{x}, @var{s})
## @deftypefnx {} {[@var{y}, @var{dy}] =} polyval (@var{p}, @var{x}, @var{s}, @var{mu})
##
## Evaluate the polynomial @var{p} at the specified values of @var{x}.
##
## If @var{x} is a vector or matrix, the polynomial is evaluated for each of
## the elements of @var{x}.
##
## When @var{mu} is present, evaluate the polynomial for
## @w{(@var{x} - @var{mu}(1)) / @var{mu}(2)}.
##
## In addition to evaluating the polynomial, the second output represents the
## prediction interval, @var{y} +/- @var{dy}, which contains at least 50% of
## the future predictions. To calculate the prediction interval, the
## structured variable @var{s}, originating from @code{polyfit}, must be
## supplied.
##
## @seealso{polyvalm, polyaffine, polyfit, roots, poly}
## @end deftypefn
function [y, dy] = polyval (p, x, s = [], mu)
if (nargin < 2 || (nargout == 2 && nargin < 3))
print_usage ();
endif
## Algorithm requires floating point values
if (! isfloat (p) || (! isvector (p) && ! isempty (p)))
error ("polyval: P must be a numeric floating point vector");
endif
if (! isfloat (x))
error ("polyval: X must be numeric floating point");
endif
if (nargout > 1)
if (isempty (s))
error ("polyval: S input is required for DY output argument");
elseif (isstruct (s))
if (! all (ismember ({"R", "normr", "df"}, fieldnames (s))))
error ("polyval: S input is missing required fields");
endif
else
error ("polyval: S input must be a structure");
endif
endif
if (nargin == 4 && (! isfloat (mu) || numel (mu) < 2))
error ("polyval: MU must be numeric floating point with 2 values");
endif
if (isempty (p) || isempty (x))
if (isa (p, "single") || isa (x, "single"))
y = zeros (size (x), "single");
else
y = zeros (size (x));
endif
return;
endif
if (nargin == 4)
x = (x - mu(1)) / mu(2);
endif
n = numel (p) - 1;
y = p(1) * ones (size (x), class (x));
for i = 2:n+1
y = y .* x + p(i);
endfor
if (nargout > 1)
## Note: the F-Distribution is generally considered to be single-sided.
## http://www.itl.nist.gov/div898/handbook/eda/section3/eda3673.htm
## t = finv (1-alpha, s.df, s.df);
## dy = t * sqrt (1 + sumsq (A/s.R, 2)) * s.normr / sqrt (s.df)
## If my inference is correct, then t must equal 1 for polyval.
## This is because finv (0.5, n, n) = 1.0 for any n.
k = numel (x);
A = (x(:) * ones (1, n+1)) .^ (ones (k, 1) * (n:-1:0));
dy = sqrt (1 + sumsq (A/s.R, 2)) * s.normr / sqrt (s.df);
dy = reshape (dy, size (x));
endif
endfunction
%!test
%! r = 0:10:50;
%! p = poly (r);
%! p = p / max (abs (p));
%! x = linspace (0,50,11);
%! y = polyval (p,x) + 0.25*sin (100*x);
%! [pf, s] = polyfit (x, y, numel (r));
%! [y1, delta] = polyval (pf, x, s);
%! expected = [0.37235, 0.35854, 0.32231, 0.32448, 0.31328, ...
%! 0.32036, 0.31328, 0.32448, 0.32231, 0.35854, 0.37235];
%! assert (delta, expected, 0.00001);
%!test
%! x = 10 + (-2:2);
%! y = [0, 0, 1, 0, 2];
%! p = polyfit (x, y, numel (x) - 1);
%! [pn, s, mu] = polyfit (x, y, numel (x) - 1);
%! y1 = polyval (p, x);
%! yn = polyval (pn, x, [], mu);
%! assert (y1, y, sqrt (eps));
%! assert (yn, y, sqrt (eps));
%!test
%! p = [0, 1, 0];
%! x = 1:10;
%! assert (x, polyval (p,x), eps);
%! x = x(:);
%! assert (x, polyval (p,x), eps);
%! x = reshape (x, [2, 5]);
%! assert (x, polyval (p,x), eps);
%! x = reshape (x, [5, 2]);
%! assert (x, polyval (p,x), eps);
%! x = reshape (x, [1, 1, 5, 2]);
%! assert (x, polyval (p,x), eps);
%!test
%! p = [1];
%! x = 1:10;
%! y = ones (size (x));
%! assert (y, polyval (p,x), eps);
%! x = x(:);
%! y = ones (size (x));
%! assert (y, polyval (p,x), eps);
%! x = reshape (x, [2, 5]);
%! y = ones (size (x));
%! assert (y, polyval (p,x), eps);
%! x = reshape (x, [5, 2]);
%! y = ones (size (x));
%! assert (y, polyval (p,x), eps);
%! x = reshape (x, [1, 1, 5, 2]);
## Test empty combinations
%!assert (polyval ([], 1:10), zeros (1, 10))
%!assert (class (polyval (single ([]), 1:10)), "single")
%!assert (class (polyval ([], single (1:10))), "single")
%!assert (polyval (1, []), [])
%!assert (polyval ([], []), [])
%!assert (polyval (1, zeros (0,3)), zeros (0, 3))
%!assert (class (polyval (single (1), [])), "single")
%!assert (class (polyval (1, single ([]))), "single")
%!assert (class (polyval (single ([]), [])), "single")
%!assert (class (polyval ([], single ([]))), "single")
## Test input validation
%!error <Invalid call> polyval ()
%!error <Invalid call> polyval (1)
%!error <Invalid call> [y, dy] = polyval (1, 2)
%!error <P must be a numeric floating point vector> polyval ({1, 0}, 0:10)
%!error <P must be a numeric floating point vector> polyval (int8 ([1]), 0:10)
%!error <P must be a numeric floating point vector> polyval ([1,0;0,1], 0:10)
%!error <X must be numeric floating point> polyval ([1,0], {0:10})
%!error <X must be numeric floating point> polyval ([1,0], int8 (0:10))
%!error <S input is required> [y, dy] = polyval (1, 1, [])
%!error <S input is missing required fields>
%! [y, dy] = polyval (1, 1, struct ("T", 0, "normr", 1, "df", 2));
%!error <S input must be a structure> [y, dy] = polyval (1, 1, 2)
%!error <MU must be numeric floating point with 2 values>
%! polyval (1, 1, [], {1, 2});
%!error <MU must be numeric floating point with 2 values>
%! polyval (1, 1, [], int8 ([1,2]));
%!error <MU must be numeric floating point with 2 values>
%! polyval (1, 1, [], [1]);
|