1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
########################################################################
##
## Copyright (C) 1995-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {} cov (@var{x})
## @deftypefnx {} {} cov (@var{x}, @var{opt})
## @deftypefnx {} {} cov (@var{x}, @var{y})
## @deftypefnx {} {} cov (@var{x}, @var{y}, @var{opt})
## Compute the covariance matrix.
##
## If each row of @var{x} and @var{y} is an observation, and each column is
## a variable, then the @w{(@var{i}, @var{j})-th} entry of
## @code{cov (@var{x}, @var{y})} is the covariance between the @var{i}-th
## variable in @var{x} and the @var{j}-th variable in @var{y}.
## @tex
## $$
## \sigma_{ij} = {1 \over N-1} \sum_{i=1}^N (x_i - \bar{x})(y_i - \bar{y})
## $$
## where $\bar{x}$ and $\bar{y}$ are the mean values of @var{x} and @var{y}.
## @end tex
## @ifnottex
##
## @example
## cov (@var{x}) = 1/(N-1) * SUM_i (@var{x}(i) - mean(@var{x})) * (@var{y}(i) - mean(@var{y}))
## @end example
##
## @noindent
## where @math{N} is the length of the @var{x} and @var{y} vectors.
##
## @end ifnottex
##
## If called with one argument, compute @code{cov (@var{x}, @var{x})}, the
## covariance between the columns of @var{x}.
##
## The argument @var{opt} determines the type of normalization to use.
## Valid values are
##
## @table @asis
## @item 0:
## normalize with @math{N-1}, provides the best unbiased estimator of the
## covariance [default]
##
## @item 1:
## normalize with @math{N}, this provides the second moment around the mean
## @end table
##
## Compatibility Note:: Octave always treats rows of @var{x} and @var{y}
## as multivariate random variables.
## For two inputs, however, @sc{matlab} treats @var{x} and @var{y} as two
## univariate distributions regardless of their shapes, and will calculate
## @code{cov ([@var{x}(:), @var{y}(:)])} whenever the number of elements in
## @var{x} and @var{y} are equal. This will result in a 2x2 matrix.
## Code relying on @sc{matlab}'s definition will need to be changed when
## running in Octave.
## @seealso{corr}
## @end deftypefn
function c = cov (x, y = [], opt = 0)
if (nargin < 1)
print_usage ();
endif
if ( ! (isnumeric (x) || islogical (x))
|| ! (isnumeric (y) || islogical (y)))
error ("cov: X and Y must be numeric matrices or vectors");
endif
if (ndims (x) != 2 || ndims (y) != 2)
error ("cov: X and Y must be 2-D matrices or vectors");
endif
if (nargin == 2 && isscalar (y))
opt = y;
endif
if (opt != 0 && opt != 1)
error ("cov: normalization OPT must be 0 or 1");
endif
## Special case, scalar has zero covariance
if (isscalar (x))
if (isa (x, "single"))
c = single (0);
else
c = 0;
endif
return;
endif
if (isrow (x))
x = x.';
endif
n = rows (x);
if (nargin == 1 || isscalar (y))
x = center (x, 1);
c = x' * x / (n - 1 + opt);
else
if (isrow (y))
y = y.';
endif
if (rows (y) != n)
error ("cov: X and Y must have the same number of observations");
endif
x = center (x, 1);
y = center (y, 1);
c = x' * y / (n - 1 + opt);
endif
endfunction
%!test
%! x = rand (10);
%! cx1 = cov (x);
%! cx2 = cov (x, x);
%! assert (size (cx1) == [10, 10] && size (cx2) == [10, 10]);
%! assert (cx1, cx2, 1e1*eps);
%!test
%! x = [1:3]';
%! y = [3:-1:1]';
%! assert (cov (x, y), -1, 5*eps);
%! assert (cov (x, flipud (y)), 1, 5*eps);
%! assert (cov ([x, y]), [1 -1; -1 1], 5*eps);
%!test
%! x = single ([1:3]');
%! y = single ([3:-1:1]');
%! assert (cov (x, y), single (-1), 5*eps);
%! assert (cov (x, flipud (y)), single (1), 5*eps);
%! assert (cov ([x, y]), single ([1 -1; -1 1]), 5*eps);
%!test
%! x = [1:5];
%! c = cov (x);
%! assert (isscalar (c));
%! assert (c, 2.5);
%!assert (cov (5), 0)
%!assert (cov (single (5)), single (0))
%!test
%! x = [1:5];
%! c = cov (x, 0);
%! assert (c, 2.5);
%! c = cov (x, 1);
%! assert (c, 2);
## Test input validation
%!error <Invalid call> cov ()
%!error cov ([1; 2], ["A", "B"])
%!error cov (ones (2,2,2))
%!error cov (ones (2,2), ones (2,2,2))
%!error <normalization OPT must be 0 or 1> cov (1, 3)
%!error cov (ones (2,2), ones (3,2))
|