1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
########################################################################
##
## Copyright (C) 1995-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {} mean (@var{x})
## @deftypefnx {} {} mean (@var{x}, @var{dim})
## @deftypefnx {} {} mean (@var{x}, @var{opt})
## @deftypefnx {} {} mean (@var{x}, @var{dim}, @var{opt})
## @deftypefnx {} {} mean (@dots{}, @var{outtype})
## Compute the mean of the elements of the vector @var{x}.
##
## The mean is defined as
##
## @tex
## $$ {\rm mean}(x) = \bar{x} = {1\over N} \sum_{i=1}^N x_i $$
## where $N$ is the number of elements of @var{x}.
##
## @end tex
## @ifnottex
##
## @example
## mean (@var{x}) = SUM_i @var{x}(i) / N
## @end example
##
## @noindent
## where @math{N} is the length of the @var{x} vector.
##
## @end ifnottex
## If @var{x} is a matrix, compute the mean for each column and return them
## in a row vector.
##
## If the optional argument @var{dim} is given, operate along this dimension.
##
## The optional argument @var{opt} selects the type of mean to compute.
## The following options are recognized:
##
## @table @asis
## @item @qcode{"a"}
## Compute the (ordinary) arithmetic mean. [default]
##
## @item @qcode{"g"}
## Compute the geometric mean.
##
## @item @qcode{"h"}
## Compute the harmonic mean.
## @end table
##
## The optional argument @var{outtype} selects the data type of the
## output value. The following options are recognized:
##
## @table @asis
## @item @qcode{"default"}
## Output will be of class double unless @var{x} is of class single,
## in which case the output will also be single.
##
## @item @qcode{"double"}
## Output will be of class double.
##
## @item @qcode{"native"}
## Output will be the same class as @var{x} unless @var{x} is of class
## logical in which case it returns of class double.
##
## @end table
##
## Both @var{dim} and @var{opt} are optional. If both are supplied, either
## may appear first.
## @seealso{median, mode}
## @end deftypefn
function y = mean (x, varargin)
if (nargin < 1 || nargin > 4)
print_usage ();
endif
if (! (isnumeric (x) || islogical (x)))
error ("mean: X must be a numeric vector or matrix");
endif
nd = ndims (x);
sz = size (x);
## We support too many options...
## If OUTTYPE is set, it must be the last option. If DIM and
## MEAN_TYPE exist, they must be the first two options
out_type = "default";
if (numel (varargin))
maybe_out_type = tolower (varargin{end});
if (any (strcmpi (maybe_out_type, {"default", "double", "native"})))
out_type = maybe_out_type;
varargin(end) = [];
endif
endif
scalars = cellfun (@isscalar, varargin);
chars = cellfun (@ischar, varargin);
numerics = cellfun (@isnumeric, varargin);
dim_mask = numerics & scalars;
mean_type_mask = chars & scalars;
if (! all (dim_mask | mean_type_mask))
print_usage ();
endif
switch (nnz (dim_mask))
case 0 # Find the first non-singleton dimension
(dim = find (sz > 1, 1)) || (dim = 1);
case 1
dim = varargin{dim_mask};
if (dim != fix (dim) || dim < 1)
error ("mean: DIM must be an integer and a valid dimension");
endif
otherwise
print_usage ();
endswitch
switch (nnz (mean_type_mask))
case 0
mean_type = "a";
case 1
mean_type = varargin{mean_type_mask};
otherwise
print_usage ();
endswitch
## The actual mean computation
n = size (x, dim);
switch (mean_type)
case "a"
y = sum (x, dim) / n;
case "g"
if (! any (x(:) < 0))
y = exp (sum (log (x), dim) ./ n);
else
error ("mean: X must not contain any negative values");
endif
case "h"
y = n ./ sum (1 ./ x, dim);
otherwise
error ("mean: mean type '%s' not recognized", mean_type);
endswitch
## Convert output as requested
switch (out_type)
case "default"
## do nothing, the operators already do the right thing
case "double"
y = double (y);
case "native"
if (islogical (x))
## ignore it, return double anyway
else
y = cast (y, class (x));
endif
otherwise
## this should have been filtered out during input check, but...
error ("mean: OUTTYPE '%s' not recognized", out_type);
endswitch
endfunction
%!test
%! x = -10:10;
%! y = x';
%! z = [y, y+10];
%! assert (mean (x), 0);
%! assert (mean (y), 0);
%! assert (mean (z), [0, 10]);
## Test small numbers
%!assert (mean (repmat (0.1,1,1000), "g"), 0.1, 20*eps)
%!assert (mean (magic (3), 1), [5, 5, 5])
%!assert (mean (magic (3), 2), [5; 5; 5])
%!assert (mean ([2 8], "g"), 4)
%!assert (mean ([4 4 2], "h"), 3)
%!assert (mean (logical ([1 0 1 1])), 0.75)
%!assert (mean (single ([1 0 1 1])), single (0.75))
%!assert (mean ([1 2], 3), [1 2])
## Test input validation
%!error <Invalid call to mean. Correct usage is> mean ()
%!error <Invalid call to mean. Correct usage is> mean (1, 2, 3, 4)
%!error <X must be a numeric> mean ({1:5})
%!error <Invalid call to mean. Correct usage is> mean (1, 2, 3)
%!error <Invalid call to mean. Correct usage is> mean (1, ones (2,2))
%!error <DIM must be an integer> mean (1, 1.5)
%!error <DIM must be .* a valid dimension> mean (1, 0)
%!error <X must not contain any negative values> mean ([1 -1], "g")
%!error <mean type 'b' not recognized> mean (1, "b")
%!error <Invalid call to mean. Correct usage is> mean (1, 1, "foo")
## Test outtype option
%!test
%! in = [1 2 3];
%! out = 2;
%! assert (mean (in, "default"), mean (in));
%! assert (mean (in, "default"), out);
%!
%! in = single ([1 2 3]);
%! out = 2;
%! assert (mean (in, "default"), mean (in));
%! assert (mean (in, "default"), single (out));
%! assert (mean (in, "double"), out);
%! assert (mean (in, "native"), single (out));
%!
%! in = uint8 ([1 2 3]);
%! out = 2;
%! assert (mean (in, "default"), mean (in));
%! assert (mean (in, "default"), out);
%! assert (mean (in, "double"), out);
%! assert (mean (in, "native"), uint8 (out));
%!
%! in = logical ([1 0 1]);
%! out = 2/3;
%! assert (mean (in, "default"), mean (in));
%! assert (mean (in, "default"), out);
%! assert (mean (in, "native"), out); # logical ignores native option
|