1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
########################################################################
##
## Copyright (C) 1996-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {} median (@var{x})
## @deftypefnx {} {} median (@var{x}, @var{dim})
## Compute the median value of the elements of the vector @var{x}.
##
## When the elements of @var{x} are sorted, say
## @code{@var{s} = sort (@var{x})}, the median is defined as
## @tex
## $$
## {\rm median} (x) =
## \cases{s(\lceil N/2\rceil), & $N$ odd;\cr
## (s(N/2)+s(N/2+1))/2, & $N$ even.}
## $$
## where $N$ is the number of elements of @var{x}.
##
## @end tex
## @ifnottex
##
## @example
## @group
## | @var{s}(ceil(N/2)) N odd
## median (@var{x}) = |
## | (@var{s}(N/2) + @var{s}(N/2+1))/2 N even
## @end group
## @end example
##
## @end ifnottex
## If @var{x} is of a discrete type such as integer or logical, then
## the case of even @math{N} rounds up (or toward @code{true}).
##
## If @var{x} is a matrix, compute the median value for each column and
## return them in a row vector.
##
## If the optional @var{dim} argument is given, operate along this dimension.
## @seealso{mean, mode}
## @end deftypefn
function retval = median (x, dim)
if (nargin < 1)
print_usage ();
endif
if (! (isnumeric (x) || islogical (x)))
error ("median: X must be a numeric vector or matrix");
endif
if (isempty (x))
error ("median: X cannot be an empty matrix");
endif
nd = ndims (x);
sz = size (x);
if (nargin < 2)
## Find the first non-singleton dimension.
(dim = find (sz > 1, 1)) || (dim = 1);
else
if (! (isscalar (dim) && dim == fix (dim) && dim > 0))
error ("median: DIM must be an integer and a valid dimension");
endif
endif
n = size (x, dim);
k = floor ((n+1) / 2);
if (mod (n, 2) == 1)
retval = nth_element (x, k, dim);
else
retval = sum (nth_element (x, k:k+1, dim), dim, "native") / 2;
if (islogical (x))
retval = logical (retval);
endif
endif
## Inject NaNs where needed, to be consistent with Matlab.
if (isfloat (x))
retval(any (isnan (x), dim)) = NaN;
endif
endfunction
%!test
%! x = [1, 2, 3, 4, 5, 6];
%! x2 = x';
%! y = [1, 2, 3, 4, 5, 6, 7];
%! y2 = y';
%!
%! assert (median (x) == median (x2) && median (x) == 3.5);
%! assert (median (y) == median (y2) && median (y) == 4);
%! assert (median ([x2, 2*x2]), [3.5, 7]);
%! assert (median ([y2, 3*y2]), [4, 12]);
%!assert (median (single ([1,2,3])), single (2))
%!assert (median ([1,2,NaN;4,5,6;NaN,8,9]), [NaN, 5, NaN])
%!assert (median ([1,2], 3), [1,2])
## Test multidimensional arrays
%!shared a, b, x, y
%! old_state = rand ("state");
%! restore_state = onCleanup (@() rand ("state", old_state));
%! rand ("state", 2);
%! a = rand (2,3,4,5);
%! b = rand (3,4,6,5);
%! x = sort (a, 4);
%! y = sort (b, 3);
%!assert <*35679> (median (a, 4), x(:, :, :, 3))
%!assert <*35679> (median (b, 3), (y(:, :, 3, :) + y(:, :, 4, :))/2)
## Test non-floating point types
%!assert (median ([true, false]), true)
%!assert (median (uint8 ([1, 3])), uint8 (2))
%!assert (median (int8 ([1, 3, 4])), int8 (3))
%!assert (median (single ([1, 3, 4])), single (3))
%!assert (median (single ([1, 3, NaN])), single (NaN))
## Test input validation
%!error <Invalid call> median ()
%!error <X must be a numeric> median ({1:5})
%!error <X cannot be an empty matrix> median ([])
%!error <DIM must be an integer> median (1, ones (2,2))
%!error <DIM must be an integer> median (1, 1.5)
%!error <DIM must be .* a valid dimension> median (1, 0)
|