File: mode.m

package info (click to toggle)
octave 7.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 130,464 kB
  • sloc: cpp: 332,823; ansic: 71,320; fortran: 20,963; objc: 8,562; sh: 8,115; yacc: 4,882; lex: 4,438; perl: 1,554; java: 1,366; awk: 1,257; makefile: 652; xml: 173
file content (189 lines) | stat: -rw-r--r-- 5,446 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
########################################################################
##
## Copyright (C) 2007-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {} mode (@var{x})
## @deftypefnx {} {} mode (@var{x}, @var{dim})
## @deftypefnx {} {[@var{m}, @var{f}, @var{c}] =} mode (@dots{})
## Compute the most frequently occurring value in a dataset (mode).
##
## @code{mode} determines the frequency of values along the first non-singleton
## dimension and returns the value with the highest frequency.  If two, or
## more, values have the same frequency @code{mode} returns the smallest.
##
## If the optional argument @var{dim} is given, operate along this dimension.
##
## The return variable @var{f} is the number of occurrences of the mode in
## the dataset.
##
## The cell array @var{c} contains all of the elements with the maximum
## frequency.
## @seealso{mean, median}
## @end deftypefn

function [m, f, c] = mode (x, dim)

  if (nargin < 1)
    print_usage ();
  endif

  if (! (isnumeric (x) || islogical (x)))
    error ("mode: X must be a numeric vector or matrix");
  endif

  nd = ndims (x);
  sz = size (x);
  if (nargin < 2)
    ## Find the first non-singleton dimension.
    (dim = find (sz > 1, 1)) || (dim = 1);
  else
    if (! (isscalar (dim) && dim == fix (dim) && dim > 0))
      error ("mode: DIM must be an integer and a valid dimension");
    endif
  endif

  if (dim > nd)
    ## Special case of mode over non-existent dimension.
    m = x;
    f = ones (size (x));
    c = num2cell (x);
    return;
  endif

  sz2 = sz;
  sz2(dim) = 1;
  sz3 = ones (1, nd);
  sz3(dim) = sz(dim);

  if (issparse (x))
    t2 = sparse (sz(1), sz(2));
  else
    t2 = zeros (sz);
  endif

  if (dim != 1)
    perm = [dim, 1:dim-1, dim+1:nd];
    t2 = permute (t2, perm);
  endif

  xs = sort (x, dim);
  t = cat (dim, true (sz2), diff (xs, 1, dim) != 0);

  if (dim != 1)
    t2(permute (t != 0, perm)) = diff ([find(permute (t, perm))(:); prod(sz)+1]);
    f = max (ipermute (t2, perm), [], dim);
    xs = permute (xs, perm);
  else
    t2(t) = diff ([find(t)(:); prod(sz)+1]);
    f = max (t2, [], dim);
  endif

  c = cell (sz2);
  if (issparse (x))
    m = sparse (sz2(1), sz2(2));
  else
    m = zeros (sz2, class (x));
  endif
  for i = 1 : prod (sz2)
    c{i} = xs(t2(:, i) == f(i), i);
    m(i) = c{i}(1);
  endfor

endfunction


%!test
%! [m, f, c] = mode (toeplitz (1:5));
%! assert (m, [1,2,2,2,1]);
%! assert (f, [1,2,2,2,1]);
%! assert (c, {[1;2;3;4;5],[2],[2;3],[2],[1;2;3;4;5]});
%!test
%! [m, f, c] = mode (toeplitz (1:5), 2);
%! assert (m, [1;2;2;2;1]);
%! assert (f, [1;2;2;2;1]);
%! assert (c, {[1;2;3;4;5];[2];[2;3];[2];[1;2;3;4;5]});
%!test
%! a = sprandn (32, 32, 0.05);
%! sp0 = sparse (0);
%! [m, f, c] = mode (a);
%! [m2, f2, c2] = mode (full (a));
%! assert (m, sparse (m2));
%! assert (f, sparse (f2));
%! c_exp(1:length (a)) = { sp0 };
%! assert (c ,c_exp);
%! assert (c2,c_exp);

%!assert (mode ([2,3,1,2,3,4],1),[2,3,1,2,3,4])
%!assert (mode ([2,3,1,2,3,4],2),2)
%!assert (mode ([2,3,1,2,3,4]),2)
%!assert (mode (single ([2,3,1,2,3,4])), single (2))
%!assert (mode (int8 ([2,3,1,2,3,4])), int8 (2))

%!assert (mode ([2;3;1;2;3;4],1),2)
%!assert (mode ([2;3;1;2;3;4],2),[2;3;1;2;3;4])
%!assert (mode ([2;3;1;2;3;4]),2)

%!test
%! x = magic (3);
%! [m, f, c] = mode (x, 3);
%! assert (m, x);
%! assert (f, ones (3,3));
%! assert (c, num2cell (x));

%!shared x
%! x(:,:,1) = toeplitz (1:3);
%! x(:,:,2) = circshift (toeplitz (1:3), 1);
%! x(:,:,3) = circshift (toeplitz (1:3), 2);
%!test
%! [m, f, c] = mode (x, 1);
%! assert (reshape (m, [3, 3]), [1 1 1; 2 2 2; 1 1 1]);
%! assert (reshape (f, [3, 3]), [1 1 1; 2 2 2; 1 1 1]);
%! c = reshape (c, [3, 3]);
%! assert (c{1}, [1; 2; 3]);
%! assert (c{2}, 2);
%! assert (c{3}, [1; 2; 3]);
%!test
%! [m, f, c] = mode (x, 2);
%! assert (reshape (m, [3, 3]), [1 1 2; 2 1 1; 1 2 1]);
%! assert (reshape (f, [3, 3]), [1 1 2; 2 1 1; 1 2 1]);
%! c = reshape (c, [3, 3]);
%! assert (c{1}, [1; 2; 3]);
%! assert (c{2}, 2);
%! assert (c{3}, [1; 2; 3]);
%!test
%! [m, f, c] = mode (x, 3);
%! assert (reshape (m, [3, 3]), [1 2 1; 1 2 1; 1 2 1]);
%! assert (reshape (f, [3, 3]), [1 2 1; 1 2 1; 1 2 1]);
%! c = reshape (c, [3, 3]);
%! assert (c{1}, [1; 2; 3]);
%! assert (c{2}, [1; 2; 3]);
%! assert (c{3}, [1; 2; 3]);

## Test input validation
%!error <Invalid call> mode ()
%!error <X must be a numeric> mode ({1 2 3})
%!error <DIM must be an integer> mode (1, ones (2,2))
%!error <DIM must be an integer> mode (1, 1.5)
%!error <DIM must be .* a valid dimension> mode (1, 0)