1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
########################################################################
##
## Copyright (C) 2007-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {} mode (@var{x})
## @deftypefnx {} {} mode (@var{x}, @var{dim})
## @deftypefnx {} {[@var{m}, @var{f}, @var{c}] =} mode (@dots{})
## Compute the most frequently occurring value in a dataset (mode).
##
## @code{mode} determines the frequency of values along the first non-singleton
## dimension and returns the value with the highest frequency. If two, or
## more, values have the same frequency @code{mode} returns the smallest.
##
## If the optional argument @var{dim} is given, operate along this dimension.
##
## The return variable @var{f} is the number of occurrences of the mode in
## the dataset.
##
## The cell array @var{c} contains all of the elements with the maximum
## frequency.
## @seealso{mean, median}
## @end deftypefn
function [m, f, c] = mode (x, dim)
if (nargin < 1)
print_usage ();
endif
if (! (isnumeric (x) || islogical (x)))
error ("mode: X must be a numeric vector or matrix");
endif
nd = ndims (x);
sz = size (x);
if (nargin < 2)
## Find the first non-singleton dimension.
(dim = find (sz > 1, 1)) || (dim = 1);
else
if (! (isscalar (dim) && dim == fix (dim) && dim > 0))
error ("mode: DIM must be an integer and a valid dimension");
endif
endif
if (dim > nd)
## Special case of mode over non-existent dimension.
m = x;
f = ones (size (x));
c = num2cell (x);
return;
endif
sz2 = sz;
sz2(dim) = 1;
sz3 = ones (1, nd);
sz3(dim) = sz(dim);
if (issparse (x))
t2 = sparse (sz(1), sz(2));
else
t2 = zeros (sz);
endif
if (dim != 1)
perm = [dim, 1:dim-1, dim+1:nd];
t2 = permute (t2, perm);
endif
xs = sort (x, dim);
t = cat (dim, true (sz2), diff (xs, 1, dim) != 0);
if (dim != 1)
t2(permute (t != 0, perm)) = diff ([find(permute (t, perm))(:); prod(sz)+1]);
f = max (ipermute (t2, perm), [], dim);
xs = permute (xs, perm);
else
t2(t) = diff ([find(t)(:); prod(sz)+1]);
f = max (t2, [], dim);
endif
c = cell (sz2);
if (issparse (x))
m = sparse (sz2(1), sz2(2));
else
m = zeros (sz2, class (x));
endif
for i = 1 : prod (sz2)
c{i} = xs(t2(:, i) == f(i), i);
m(i) = c{i}(1);
endfor
endfunction
%!test
%! [m, f, c] = mode (toeplitz (1:5));
%! assert (m, [1,2,2,2,1]);
%! assert (f, [1,2,2,2,1]);
%! assert (c, {[1;2;3;4;5],[2],[2;3],[2],[1;2;3;4;5]});
%!test
%! [m, f, c] = mode (toeplitz (1:5), 2);
%! assert (m, [1;2;2;2;1]);
%! assert (f, [1;2;2;2;1]);
%! assert (c, {[1;2;3;4;5];[2];[2;3];[2];[1;2;3;4;5]});
%!test
%! a = sprandn (32, 32, 0.05);
%! sp0 = sparse (0);
%! [m, f, c] = mode (a);
%! [m2, f2, c2] = mode (full (a));
%! assert (m, sparse (m2));
%! assert (f, sparse (f2));
%! c_exp(1:length (a)) = { sp0 };
%! assert (c ,c_exp);
%! assert (c2,c_exp);
%!assert (mode ([2,3,1,2,3,4],1),[2,3,1,2,3,4])
%!assert (mode ([2,3,1,2,3,4],2),2)
%!assert (mode ([2,3,1,2,3,4]),2)
%!assert (mode (single ([2,3,1,2,3,4])), single (2))
%!assert (mode (int8 ([2,3,1,2,3,4])), int8 (2))
%!assert (mode ([2;3;1;2;3;4],1),2)
%!assert (mode ([2;3;1;2;3;4],2),[2;3;1;2;3;4])
%!assert (mode ([2;3;1;2;3;4]),2)
%!test
%! x = magic (3);
%! [m, f, c] = mode (x, 3);
%! assert (m, x);
%! assert (f, ones (3,3));
%! assert (c, num2cell (x));
%!shared x
%! x(:,:,1) = toeplitz (1:3);
%! x(:,:,2) = circshift (toeplitz (1:3), 1);
%! x(:,:,3) = circshift (toeplitz (1:3), 2);
%!test
%! [m, f, c] = mode (x, 1);
%! assert (reshape (m, [3, 3]), [1 1 1; 2 2 2; 1 1 1]);
%! assert (reshape (f, [3, 3]), [1 1 1; 2 2 2; 1 1 1]);
%! c = reshape (c, [3, 3]);
%! assert (c{1}, [1; 2; 3]);
%! assert (c{2}, 2);
%! assert (c{3}, [1; 2; 3]);
%!test
%! [m, f, c] = mode (x, 2);
%! assert (reshape (m, [3, 3]), [1 1 2; 2 1 1; 1 2 1]);
%! assert (reshape (f, [3, 3]), [1 1 2; 2 1 1; 1 2 1]);
%! c = reshape (c, [3, 3]);
%! assert (c{1}, [1; 2; 3]);
%! assert (c{2}, 2);
%! assert (c{3}, [1; 2; 3]);
%!test
%! [m, f, c] = mode (x, 3);
%! assert (reshape (m, [3, 3]), [1 2 1; 1 2 1; 1 2 1]);
%! assert (reshape (f, [3, 3]), [1 2 1; 1 2 1; 1 2 1]);
%! c = reshape (c, [3, 3]);
%! assert (c{1}, [1; 2; 3]);
%! assert (c{2}, [1; 2; 3]);
%! assert (c{3}, [1; 2; 3]);
## Test input validation
%!error <Invalid call> mode ()
%!error <X must be a numeric> mode ({1 2 3})
%!error <DIM must be an integer> mode (1, ones (2,2))
%!error <DIM must be an integer> mode (1, 1.5)
%!error <DIM must be .* a valid dimension> mode (1, 0)
|