1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
########################################################################
##
## Copyright (C) 1996-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {} std (@var{x})
## @deftypefnx {} {} std (@var{x}, @var{w})
## @deftypefnx {} {} std (@var{x}, @var{w}, @var{dim})
## @deftypefnx {} {} std (@var{x}, @var{w}, @qcode{"ALL"})
## Compute the standard deviation of the elements of the vector @var{x}.
##
## The standard deviation is defined as
## @tex
## $$
## {\rm std} (x) = \sigma = \sqrt{{\sum_{i=1}^N (x_i - \bar{x})^2 \over N - 1}}
## $$
## where $\bar{x}$ is the mean value of @var{x} and $N$ is the number of elements of @var{x}.
## @end tex
## @ifnottex
##
## @example
## @group
## std (@var{x}) = sqrt ( 1/(N-1) SUM_i (@var{x}(i) - mean(@var{x}))^2 )
## @end group
## @end example
##
## @noindent
## where @math{N} is the number of elements of the @var{x} vector.
## @end ifnottex
##
## If @var{x} is an array, compute the standard deviation for each column and
## return them in a row vector (or for an n-D array, the result is returned as
## an array of dimension 1 x n x m x @dots{}).
##
## The optional argument @var{w} determines the weighting scheme to use. Valid
## values are:
##
## @table @asis
## @item 0 [default]:
## Normalize with @math{N-1}. This provides the square root of the best
## unbiased estimator of the variance.
##
## @item 1:
## Normalize with @math{N}. This provides the square root of the second moment
## around the mean.
##
## @item a vector:
## Compute the weighted standard deviation with nonnegative scalar weights. The
## length of @var{w} must be equal to the size of @var{x} along dimension
## @var{dim}.
## @end table
##
## If @math{N} is equal to 1 the value of @var{W} is ignored and
## normalization by @math{N} is used.
##
## The optional variable @var{dim} forces @code{std} to operate over the
## specified dimension. @var{dim} can either be a scalar dimension or a vector
## of non-repeating dimensions over which to operate. Dimensions must be
## positive integers, and the standard deviation is calculated over the array
## slice defined by @var{dim}.
##
## Specifying dimension @qcode{"ALL"} will force @code{std} to operate on all
## elements of @var{x}, and is equivalent to @code{std (@var{x}(:))}.
##
## When @var{dim} is a vector or @qcode{"ALL"}, @var{w} must be either 0 or 1.
## @seealso{var, bounds, mad, range, iqr, mean, median}
## @end deftypefn
function retval = std (varargin)
retval = sqrt (var (varargin{:}));
endfunction
%!test
%! x = ones (10, 2);
%! y = [1, 3];
%! assert (std (x), [0, 0]);
%! assert (std (y), sqrt (2), sqrt (eps));
%! assert (std (x, 0, 2), zeros (10, 1));
%!assert (std (ones (3, 1, 2), 0, 2), zeros (3, 1, 2))
%!assert (std ([1 2], 0), sqrt (2)/2, 5*eps)
%!assert (std ([1 2], 1), 0.5, 5*eps)
%!assert (std (1), 0)
%!assert (std (single (1)), single (0))
%!assert (std ([1 2 3], [], 3), [0 0 0])
##Test empty inputs
%!assert (std ([]), NaN)
%!assert (std ([],[],1), NaN(1,0))
%!assert (std ([],[],2), NaN(0,1))
%!assert (std ([],[],3), [])
%!assert (std (ones (0,1)), NaN)
%!assert (std (ones (1,0)), NaN)
%!assert (std (ones (1,0), [], 1), NaN(1,0))
%!assert (std (ones (1,0), [], 2), NaN)
%!assert (std (ones (1,0), [], 3), NaN(1,0))
%!assert (std (ones (0,1)), NaN)
%!assert (std (ones (0,1), [], 1), NaN)
%!assert (std (ones (0,1), [], 2), NaN(0,1))
%!assert (std (ones (0,1), [], 3), NaN(0,1))
%!assert (std (ones (1,3,0,2)), NaN(1,1,0,2))
%!assert (std (ones (1,3,0,2), [], 1), NaN(1,3,0,2))
%!assert (std (ones (1,3,0,2), [], 2), NaN(1,1,0,2))
%!assert (std (ones (1,3,0,2), [], 3), NaN(1,3,1,2))
%!assert (std (ones (1,3,0,2), [], 4), NaN(1,3,0))
## Test input validation
%!error <Invalid call> std ()
%!error <X must be a numeric> std (['A'; 'B'])
%!error <W must be 0> std ([1 2], 2)
%!error <DIM must be a positive integer> std (1, [], ones (2,2))
%!error <DIM must be a positive integer> std (1, [], 1.5)
%!error <DIM must be a positive integer> std (1, [], 0)
|