1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
|
########################################################################
##
## Copyright (C) 1995-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {} var (@var{x})
## @deftypefnx {} {} var (@var{x}, @var{w})
## @deftypefnx {} {} var (@var{x}, @var{w}, @var{dim})
## @deftypefnx {} {} var (@var{x}, @var{w}, @qcode{"ALL"})
## Compute the variance of the elements of the vector @var{x}.
##
## The variance is defined as
## @tex
## $$
## {\rm var} (x) = \sigma^2 = {\sum_{i=1}^N (x_i - \bar{x})^2 \over N - 1}
## $$
## where $\bar{x}$ is the mean value of @var{x} and $N$ is the number of
## elements of @var{x}.
##
## @end tex
## @ifnottex
##
## @example
## @group
## var (@var{x}) = 1/(N-1) SUM_i (@var{x}(i) - mean(@var{x}))^2
## @end group
## @end example
##
## @noindent
## where @math{N} is the length of the @var{x} vector.
##
## @end ifnottex
## If @var{x} is an array, compute the variance for each column and return
## them in a row vector (or for an n-D array, the result is returned as
## an array of dimension 1 x n x m x @dots{}).
##
## The optional argument @var{w} determines the weighting scheme to use. Valid
## values are
##
## @table @asis
## @item 0 [default]:
## Normalize with @math{N-1}. This provides the square root of the best
## unbiased estimator of the variance.
##
## @item 1:
## Normalize with @math{N}, this provides the square root of the second moment
## around the mean
##
## @item a vector:
## Compute the weighted variance with nonnegative scalar weights. The length of
## @var{w} must be equal to the size of @var{x} along dimension @var{dim}.
## @end table
##
## If @math{N} is equal to 1 the value of @var{W} is ignored and
## normalization by @math{N} is used.
##
## The optional variable @var{dim} forces @code{var} to operate over the
## specified dimension. @var{dim} can either be a scalar dimension or a vector
## of non-repeating dimensions over which to operate. Dimensions must be
## positive integers, and the variance is calculated over the array slice
## defined by @var{dim}.
##
## Specifying dimension @qcode{"ALL"} will force @code{var} to operate on all
## elements of @var{x}, and is equivalent to @code{var (@var{x}(:))}.
##
## When @var{dim} is a vector or @qcode{"ALL"}, @var{w} must be either 0 or 1.
## @seealso{cov, std, skewness, kurtosis, moment}
## @end deftypefn
function retval = var (x, w = 0, dim)
if (nargin < 1)
print_usage ();
elseif (nargin < 3)
dim = [];
endif
if (! (isnumeric (x) || islogical (x)))
error ("var: X must be a numeric vector or matrix");
endif
nd = ndims (x);
sz = size (x);
emptydimflag = false;
if (isempty (dim))
emptydimflag = true; ## Compatibliity hack for empty x, ndims==2
## Find the first non-singleton dimension.
(dim = find (sz != 1, 1)) || (dim = 1);
else
if (! (isscalar (dim) && dim == fix (dim) && dim > 0))
if (isvector (dim) &&
isnumeric (dim) &&
all (dim > 0) &&
all (rem (dim, 1) == 0))
if (dim != unique (dim, "stable"))
error (["var: vector DIM must contain non-repeating positive"...
"integers"]);
endif
## Check W
if (! isscalar (w))
error ("var: W must be either 0 or 1 when DIM is a vector");
endif
## Reshape X to compute the variance over an array slice
if (iscolumn (dim))
dim = transpose (dim);
endif
collapsed_dims = dim;
dim = dim(end);
## Permute X to cluster the dimensions to collapse
highest_dim = max ([nd, collapsed_dims]);
perm_start = perm_end = [1:highest_dim];
perm_start(dim:end) = [];
perm_start(ismember (perm_start, collapsed_dims)) = [];
perm_end(1:dim) = [];
perm_end(ismember (perm_end, collapsed_dims)) = [];
perm = [perm_start, collapsed_dims, perm_end];
x = permute (x, perm);
## Collapse the given dimensions
newshape = ones (1, highest_dim);
newshape(1:nd) = sz;
newshape(collapsed_dims(1:(end - 1))) = 1;
newshape(dim) = prod (sz(collapsed_dims));
## New X with collapsed dimensions
x = reshape (x, newshape);
elseif (ischar (dim) &&
strcmp (tolower (dim), "all"))
## Check W
if (! isscalar (w))
error ("var: W must be either 0 or 1 when using 'ALL' as dimension");
endif
## "ALL" equals to collapsing all elements to a single vector
x = x(:);
dim = 1;
sz = size (x);
else
error ("var: DIM must be a positive integer scalar, vector, or 'all'");
endif
endif
endif
n = size (x, dim);
if (isempty (w))
w = 0;
elseif (! isvector (w) ||
! isnumeric (w) ||
(isvector (w) && any (w < 0)) ||
(isscalar (w) && ((w != 0 && w != 1) && (n != 1))))
error ("var: W must be 0, 1, or a vector of positive integers");
endif
if (isempty (x))
if (emptydimflag && isequal (sz, [0 0]))
retval = NaN;
else
output_size = sz;
output_size(dim) = 1;
retval = NaN(output_size);
endif
else
if (n == 1)
if (! isscalar (w))
error (["var: the length of W must be equal to the size of X "...
"in the dimension along which variance is calculated"])
else
if (isa (x, "single"))
retval = zeros (sz, "single");
else
retval = zeros (sz);
endif
retval(isnan (x) | isinf (x)) = NaN;
endif
else
if (isscalar (w))
retval = sumsq (center (x, dim), dim) / (n - 1 + w);
else
## Weighted variance
if (length (w) != n)
error (["var: the length of W must be equal to the size of X "...
"in the dimension along which variance is calculated"]);
else
if ((dim == 1 && rows (w) == 1) ||
(dim == 2 && columns (w) == 1))
w = transpose (w);
elseif (dim > 2)
newdims = [(ones (1, (dim - 1))), (length (w))];
w = reshape (w, newdims);
endif
den = sum (w);
## FIXME: Use bsxfun, rather than broadcasting, until broadcasting
## supports diagonal and sparse matrices (Bugs #41441, #35787).
mu = sum (bsxfun (@times, w , x), dim) ./ sum (w);
retval = sum (bsxfun (@times, w, ...
bsxfun (@minus, x, mu) .^ 2), dim) / den;
## mu = sum (w .* x, dim) ./ sum (w); # automatic broadcasting
## retval = sum (w .* ((x - mu) .^ 2), dim) / den;
endif
endif
endif
endif
endfunction
%!assert (var (13), 0)
%!assert (var (single (13)), single (0))
%!assert (var ([1,2,3]), 1)
%!assert (var ([1,2,3], 1), 2/3, eps)
%!assert (var ([1,2,3], [], 1), [0,0,0])
%!assert (var ([1,2,3], [], 3), [0,0,0])
%!assert (var (5, 99), 0)
%!assert (var (5, 99, 1), 0)
%!assert (var (5, 99, 2), 0)
%!assert (var ([1:7], [1:7]), 3)
%!assert (var ([eye(3)], [1:3]), [5/36, 2/9, 1/4], eps)
%!assert (var (ones (2,2,2), [1:2], 3), [(zeros (2,2))])
%!assert (var ([1 2; 3 4], 0, 'all'), var ([1:4]))
%!assert (var (reshape ([1:8], 2, 2, 2), 0, [1 3]), [17/3 17/3], eps)
##Test empty inputs
%!assert (var ([]), NaN)
%!assert (var ([],[],1), NaN(1,0))
%!assert (var ([],[],2), NaN(0,1))
%!assert (var ([],[],3), [])
%!assert (var (ones (0,1)), NaN)
%!assert (var (ones (1,0)), NaN)
%!assert (var (ones (1,0), [], 1), NaN(1,0))
%!assert (var (ones (1,0), [], 2), NaN)
%!assert (var (ones (1,0), [], 3), NaN(1,0))
%!assert (var (ones (0,1)), NaN)
%!assert (var (ones (0,1), [], 1), NaN)
%!assert (var (ones (0,1), [], 2), NaN(0,1))
%!assert (var (ones (0,1), [], 3), NaN(0,1))
%!assert (var (ones (1,3,0,2)), NaN(1,1,0,2))
%!assert (var (ones (1,3,0,2), [], 1), NaN(1,3,0,2))
%!assert (var (ones (1,3,0,2), [], 2), NaN(1,1,0,2))
%!assert (var (ones (1,3,0,2), [], 3), NaN(1,3,1,2))
%!assert (var (ones (1,3,0,2), [], 4), NaN(1,3,0))
## Test Inf and NaN inputs
%!assert <*63203> (var (Inf), NaN)
%!assert <*63203> (var (NaN), NaN)
%!assert <*63203> (var ([1, Inf, 3]), NaN)
%!assert <*63203> (var ([1, Inf, 3]'), NaN)
%!assert <*63203> (var ([1, NaN, 3]), NaN)
%!assert <*63203> (var ([1, NaN, 3]'), NaN)
%!assert <*63203> (var ([1, Inf, 3], [], 1), [0, NaN, 0])
%!assert <*63203> (var ([1, Inf, 3], [], 2), NaN)
%!assert <*63203> (var ([1, Inf, 3], [], 3), [0, NaN, 0])
%!assert <*63203> (var ([1, NaN, 3], [], 1), [0, NaN, 0])
%!assert <*63203> (var ([1, NaN, 3], [], 2), NaN)
%!assert <*63203> (var ([1, NaN, 3], [], 3), [0, NaN, 0])
%!assert <*63203> (var ([1, 2, 3; 3, Inf, 5]), [2, NaN, 2])
%!assert <*63203> (var ([1, Inf, 3; 3, Inf, 5]), [2, NaN, 2])
%!assert <*63203> (var ([1, 2, 3; 3, NaN, 5]), [2, NaN, 2])
%!assert <*63203> (var ([1, NaN, 3; 3, NaN, 5]), [2, NaN, 2])
%!assert <*63203> (var ([Inf, 2, NaN]), NaN)
%!assert <*63203> (var ([Inf, 2, NaN]'), NaN)
%!assert <*63203> (var ([NaN, 2, Inf]), NaN)
%!assert <*63203> (var ([NaN, 2, Inf]'), NaN)
%!assert <*63203> (var ([Inf, 2, NaN], [], 1), [NaN, 0, NaN])
%!assert <*63203> (var ([Inf, 2, NaN], [], 2), NaN)
%!assert <*63203> (var ([NaN, 2, Inf], [], 1), [NaN, 0, NaN])
%!assert <*63203> (var ([NaN, 2, Inf], [], 2), NaN)
%!assert <*63203> (var ([1, 3, NaN; 3, 5, Inf]), [2, 2, NaN])
%!assert <*63203> (var ([1, 3, Inf; 3, 5, NaN]), [2, 2, NaN]);
## Test sparse/diagonal inputs
%!assert <*63291> (var (2 * eye (2)), [2, 2])
%!assert <*63291> (var (4 * eye (2), [1, 3]), [3, 3])
%!assert <*63291> (full (var (sparse (2 * eye (2)))), [2, 2])
%!assert <*63291> (full (var (sparse (4 * eye (2)), [1, 3])), [3, 3])
%!assert <63291> (issparse (var (sparse (2 * eye (2)))))
%!assert <63291> (issparse (var (sparse (4 * eye (2)), [1, 3])))
## Test input validation
%!error <Invalid call> var ()
%!error <X must be a numeric> var (['A'; 'B'])
%!error <W must be 0> var ([1 2 3], 2)
%!error <W must be .* a vector of positive integers> var ([1 2], [-1 0])
%!error <W must be .* a vector of positive integers> var ([1 2], eye (2))
%!error <W must be either 0 or 1> var (ones (2, 2), [1 2], [1 2])
%!error <W must be either 0 or 1> var ([1 2], [1 2], 'all')
%!error <the length of W must be> var ([1 2], [1 2 3])
%!error <the length of W must be> var (1, [1 2])
%!error <the length of W must be> var ([1 2], [1 2], 1)
%!error <DIM must be a positive integer> var (1, [], ones (2,2))
%!error <DIM must be a positive integer> var (1, [], 1.5)
%!error <DIM must be a positive integer> var (1, [], 0)
|