1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
########################################################################
##
## Copyright (C) 1996-2022 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{bstr} =} dec2bin (@var{d})
## @deftypefnx {} {@var{bstr} =} dec2bin (@var{d}, @var{len})
## Return a string of ones and zeros representing the conversion of the integer
## @var{d} to a binary number.
##
## If @var{d} is a matrix or cell array, return a string matrix with one row
## for each element in @var{d}, padded with leading zeros to the width of the
## largest value.
##
## The optional second argument, @var{len}, specifies the minimum number of
## digits in the result.
##
## For negative elements of @var{d}, return the binary value of the two's
## complement. The result is padded with leading ones to 8, 16, 32, or 64
## bits as appropriate for the magnitude of the input. Positive input
## elements are padded with leading zeros to the same width. If the second
## argument @var{len} exceeds that calculated width, the result is further
## padded with leading zeros, for compatibility with @sc{matlab}.
##
## Examples:
##
## @example
## @group
## dec2bin (14)
## @result{} "1110"
##
## dec2bin (-14)
## @result{} "11110010"
## @end group
## @end example
##
## Known @sc{matlab} Incompatibility: @sc{matlab}'s @code{dec2bin} allows
## non-integer values for @var{d} as of Release 2022b, but is inconsistent
## with truncation versus rounding and is also inconsistent with its own
## @code{dec2hex} function. For self-consistency, Octave gives an error for
## non-integer inputs. Users requiring compatible code for non-integer inputs
## should make use of @code{fix} or @code{round} as appropriate.
## @seealso{bin2dec, dec2base, dec2hex}
## @end deftypefn
function bstr = dec2bin (d, len)
if (nargin == 0)
print_usage ();
endif
if (iscell (d))
d = cell2mat (d);
endif
if (! isnumeric (d) || iscomplex (d) || any (d(:) != round (d(:))))
error ("dec2bin: input must be integers");
endif
## Create column vector for algorithm (output is always col. vector anyways)
d = d(:);
neg = (d < 0); # keep track of which elements are negative
if (any (neg)) # must be a signed type
## Cast to a suitable signed integer type, then to unsigned.
## Ensure that the left-most bit of the unsigned number is 1,
## to signify negative input.
tmp = int64 (d);
if (all (tmp >= -128 & tmp <= 127))
d = int8 (d);
d(neg) = (d(neg) + intmax (d)) + 1;
d = uint8 (d);
d(neg) += uint8 (128);
elseif (all (tmp >= -32768 & tmp <= 32767))
d = int16 (d);
d(neg) = (d(neg) + intmax (d)) + 1;
d = uint16 (d);
d(neg) += uint16 (32768);
elseif (all (tmp >= -2147483648 & tmp <= 2147483647))
d = int32 (d);
d(neg) = (d(neg) + intmax (d)) + 1;
d = uint32 (d);
d(neg) += uint32 (2147483648);
else
d = int64 (d);
d(neg) = (d(neg) + intmax (d)) + 1;
d = uint64 (d);
d(neg) += uint64 (9223372036854775808);
endif
endif
if (nargin == 1)
bstr = dec2base (d, 2);
else
bstr = dec2base (d, 2, len);
endif
endfunction
%!assert (dec2bin (3), "11")
%!assert (dec2bin (14), "1110")
%!assert (dec2bin (14, 6), "001110")
%!assert (dec2bin ([1, 2; 3, 4]), ["001"; "011"; "010"; "100"])
%!assert (dec2bin ({1, 2; 3, 4}), ["001"; "011"; "010"; "100"])
%!assert (dec2bin ({1, 2; 3, 4}, 4), ["0001"; "0011"; "0010"; "0100"])
## Test negative inputs
%!assert (dec2bin (-3), "11111101")
%!assert (dec2bin (-3, 3), "11111101")
%!assert (dec2bin (-3, 9), "011111101")
%!assert (dec2bin (-2^7 - 1), "1111111101111111")
%!assert (dec2bin (-2^15 - 1), "11111111111111110111111111111111")
%!assert (dec2bin (-2^31 - 1),
%! "1111111111111111111111111111111101111111111111111111111111111111")
%!assert (dec2bin (-2^52),
%! "1111111111110000000000000000000000000000000000000000000000000000")
%!assert (dec2bin (-2^63),
%! "1000000000000000000000000000000000000000000000000000000000000000")
%!assert (dec2bin (int64 (-2) ^ 63),
%! "1000000000000000000000000000000000000000000000000000000000000000")
%!assert (dec2bin (int64 (-2) ^ 63 - 1),
%! "1000000000000000000000000000000000000000000000000000000000000000")
%!assert (dec2bin (int64 (-2) ^ 63 + 1),
%! "1000000000000000000000000000000000000000000000000000000000000001")
%!assert (dec2bin ([-1, -2; -3, -4]),
%! ["11111111"; "11111101"; "11111110"; "11111100"])
%!assert (dec2bin ([1, 2; 3, -4]),
%! ["00000001"; "00000011"; "00000010"; "11111100"])
%!assert (dec2bin ({1, 2; 3, -4}),
%! ["00000001"; "00000011"; "00000010"; "11111100"])
## Test input validation
%!error <Invalid call> dec2bin ()
%!error <input must be integer> dec2bin (+2.1)
%!error <input must be integer> dec2bin (-2.1)
%!error <input must be integer> dec2bin (+2.9)
%!error <input must be integer> dec2bin (-2.9)
%!error <input must be integer> dec2bin (1+i)
|