1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
|
/* Decomposition and composition of Unicode strings.
Copyright (C) 2009-2023 Free Software Foundation, Inc.
Written by Bruno Haible <bruno@clisp.org>, 2009.
This file is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This file is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. */
UNIT *
FUNC (uninorm_t nf, const UNIT *s, size_t n,
UNIT *resultbuf, size_t *lengthp)
{
int (*decomposer) (ucs4_t uc, ucs4_t *decomposition) = nf->decomposer;
ucs4_t (*composer) (ucs4_t uc1, ucs4_t uc2) = nf->composer;
/* The result being accumulated. */
UNIT *result;
size_t length;
size_t allocated;
/* The buffer for sorting. */
#define SORTBUF_PREALLOCATED 64
struct ucs4_with_ccc sortbuf_preallocated[2 * SORTBUF_PREALLOCATED];
struct ucs4_with_ccc *sortbuf; /* array of size 2 * sortbuf_allocated */
size_t sortbuf_allocated;
size_t sortbuf_count;
/* Initialize the accumulator. */
if (resultbuf == NULL)
{
result = NULL;
allocated = 0;
}
else
{
result = resultbuf;
allocated = *lengthp;
}
length = 0;
/* Initialize the buffer for sorting. */
sortbuf = sortbuf_preallocated;
sortbuf_allocated = SORTBUF_PREALLOCATED;
sortbuf_count = 0;
{
const UNIT *s_end = s + n;
for (;;)
{
int count;
ucs4_t decomposed[UC_DECOMPOSITION_MAX_LENGTH];
int decomposed_count;
int i;
if (s < s_end)
{
/* Fetch the next character. */
count = U_MBTOUC_UNSAFE (&decomposed[0], s, s_end - s);
decomposed_count = 1;
/* Decompose it, recursively.
It would be possible to precompute the recursive decomposition
and store it in a table. But this would significantly increase
the size of the decomposition tables, because for example for
U+1FC1 the recursive canonical decomposition and the recursive
compatibility decomposition are different. */
{
int curr;
for (curr = 0; curr < decomposed_count; )
{
/* Invariant: decomposed[0..curr-1] is fully decomposed, i.e.
all elements are atomic. */
ucs4_t curr_decomposed[UC_DECOMPOSITION_MAX_LENGTH];
int curr_decomposed_count;
curr_decomposed_count = decomposer (decomposed[curr], curr_decomposed);
if (curr_decomposed_count >= 0)
{
/* Move curr_decomposed[0..curr_decomposed_count-1] over
decomposed[curr], making room. It's not worth using
memcpy() here, since the counts are so small. */
int shift = curr_decomposed_count - 1;
if (shift < 0)
abort ();
if (shift > 0)
{
int j;
decomposed_count += shift;
if (decomposed_count > UC_DECOMPOSITION_MAX_LENGTH)
abort ();
for (j = decomposed_count - 1 - shift; j > curr; j--)
decomposed[j + shift] = decomposed[j];
}
for (; shift >= 0; shift--)
decomposed[curr + shift] = curr_decomposed[shift];
}
else
{
/* decomposed[curr] is atomic. */
curr++;
}
}
}
}
else
{
count = 0;
decomposed_count = 0;
}
i = 0;
for (;;)
{
ucs4_t uc;
int ccc;
if (s < s_end)
{
/* Fetch the next character from the decomposition. */
if (i == decomposed_count)
break;
uc = decomposed[i];
ccc = uc_combining_class (uc);
}
else
{
/* End of string reached. */
uc = 0;
ccc = 0;
}
if (ccc == 0)
{
size_t j;
/* Apply the canonical ordering algorithm to the accumulated
sequence of characters. */
if (sortbuf_count > 1)
gl_uninorm_decompose_merge_sort_inplace (sortbuf, sortbuf_count,
sortbuf + sortbuf_count);
if (composer != NULL)
{
/* Attempt to combine decomposed characters, as specified
in the Unicode Standard Annex #15 "Unicode Normalization
Forms". We need to check
1. whether the first accumulated character is a
"starter" (i.e. has ccc = 0). This is usually the
case. But when the string starts with a
non-starter, the sortbuf also starts with a
non-starter. Btw, this check could also be
omitted, because the composition table has only
entries (code1, code2) for which code1 is a
starter; if the first accumulated character is not
a starter, no lookup will succeed.
2. If the sortbuf has more than one character, check
for each of these characters that are not "blocked"
from the starter (i.e. have a ccc that is higher
than the ccc of the previous character) whether it
can be combined with the first character.
3. If only one character is left in sortbuf, check
whether it can be combined with the next character
(also a starter). */
if (sortbuf_count > 0 && sortbuf[0].ccc == 0)
{
for (j = 1; j < sortbuf_count; )
{
if (sortbuf[j].ccc > sortbuf[j - 1].ccc)
{
ucs4_t combined =
composer (sortbuf[0].code, sortbuf[j].code);
if (combined)
{
size_t k;
sortbuf[0].code = combined;
/* sortbuf[0].ccc = 0, still valid. */
for (k = j + 1; k < sortbuf_count; k++)
sortbuf[k - 1] = sortbuf[k];
sortbuf_count--;
continue;
}
}
j++;
}
if (s < s_end && sortbuf_count == 1)
{
ucs4_t combined =
composer (sortbuf[0].code, uc);
if (combined)
{
uc = combined;
ccc = 0;
/* uc could be further combined with subsequent
characters. So don't put it into sortbuf[0] in
this round, only in the next round. */
sortbuf_count = 0;
}
}
}
}
for (j = 0; j < sortbuf_count; j++)
{
ucs4_t muc = sortbuf[j].code;
/* Append muc to the result accumulator. */
if (length < allocated)
{
int ret =
U_UCTOMB (result + length, muc, allocated - length);
if (ret == -1)
{
errno = EINVAL;
goto fail;
}
if (ret >= 0)
{
length += ret;
goto done_appending;
}
}
{
size_t old_allocated = allocated;
size_t new_allocated = 2 * old_allocated;
if (new_allocated < 64)
new_allocated = 64;
if (new_allocated < old_allocated) /* integer overflow? */
abort ();
{
UNIT *larger_result;
if (result == NULL)
{
larger_result =
(UNIT *) malloc (new_allocated * sizeof (UNIT));
if (larger_result == NULL)
{
errno = ENOMEM;
goto fail;
}
}
else if (result == resultbuf)
{
larger_result =
(UNIT *) malloc (new_allocated * sizeof (UNIT));
if (larger_result == NULL)
{
errno = ENOMEM;
goto fail;
}
U_CPY (larger_result, resultbuf, length);
}
else
{
larger_result =
(UNIT *) realloc (result, new_allocated * sizeof (UNIT));
if (larger_result == NULL)
{
errno = ENOMEM;
goto fail;
}
}
result = larger_result;
allocated = new_allocated;
{
int ret =
U_UCTOMB (result + length, muc, allocated - length);
if (ret == -1)
{
errno = EINVAL;
goto fail;
}
if (ret < 0)
abort ();
length += ret;
goto done_appending;
}
}
}
done_appending: ;
}
/* sortbuf is now empty. */
sortbuf_count = 0;
}
if (!(s < s_end))
/* End of string reached. */
break;
/* Append (uc, ccc) to sortbuf. */
if (sortbuf_count == sortbuf_allocated)
{
struct ucs4_with_ccc *new_sortbuf;
sortbuf_allocated = 2 * sortbuf_allocated;
if (sortbuf_allocated < sortbuf_count) /* integer overflow? */
abort ();
new_sortbuf =
(struct ucs4_with_ccc *) malloc (2 * sortbuf_allocated * sizeof (struct ucs4_with_ccc));
if (new_sortbuf == NULL)
{
errno = ENOMEM;
goto fail;
}
memcpy (new_sortbuf, sortbuf,
sortbuf_count * sizeof (struct ucs4_with_ccc));
if (sortbuf != sortbuf_preallocated)
free (sortbuf);
sortbuf = new_sortbuf;
}
sortbuf[sortbuf_count].code = uc;
sortbuf[sortbuf_count].ccc = ccc;
sortbuf_count++;
i++;
}
if (!(s < s_end))
/* End of string reached. */
break;
s += count;
}
}
if (length == 0)
{
if (result == NULL)
{
/* Return a non-NULL value. NULL means error. */
result = (UNIT *) malloc (1);
if (result == NULL)
{
errno = ENOMEM;
goto fail;
}
}
}
else if (result != resultbuf && length < allocated)
{
/* Shrink the allocated memory if possible. */
UNIT *memory;
memory = (UNIT *) realloc (result, length * sizeof (UNIT));
if (memory != NULL)
result = memory;
}
if (sortbuf_count > 0)
abort ();
if (sortbuf != sortbuf_preallocated)
free (sortbuf);
*lengthp = length;
return result;
fail:
{
int saved_errno = errno;
if (sortbuf != sortbuf_preallocated)
free (sortbuf);
if (result != resultbuf)
free (result);
errno = saved_errno;
}
return NULL;
}
|