File: cart2sph.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (203 lines) | stat: -rw-r--r-- 6,483 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
########################################################################
##
## Copyright (C) 2000-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {[@var{theta}, @var{phi}, @var{r}] =} cart2sph (@var{x}, @var{y}, @var{z})
## @deftypefnx {} {[@var{theta}, @var{phi}, @var{r}] =} cart2sph (@var{C})
## Transform Cartesian coordinates to spherical coordinates.
##
## The inputs @var{x}, @var{y}, and @var{z} must be the same shape, or scalar.
## If called with a single matrix argument then each row of @var{C} must
## represent a Cartesian coordinate triplet (@var{x}, @var{y}, @var{z}).
##
## The outputs @var{theta}, @var{phi}, @var{r} match the shape of the inputs.
## For a matrix input @var{C} the outputs will be column vectors with rows
## corresponding to the rows of the input matrix.
##
## @var{theta} describes the azimuth angle relative to the positive x-axis
## measured in the xy-plane.
##
## @var{phi} is the elevation angle measured relative to the xy-plane.
##
## @var{r} is the distance to the origin @w{(0, 0, 0)}.
##
## The coordinate transformation is computed using:
##
## @tex
## $$ \theta = \arctan \left ({y \over x} \right ) $$
## $$ \phi = \arctan \left ( {z \over {\sqrt{x^2+y^2}}} \right ) $$
## $$ r = \sqrt{x^2 + y^2 + z^2} $$
## @end tex
## @ifnottex
##
## @example
## @group
## @var{theta} = arctan (@var{y} / @var{x})
## @var{phi} = arctan (@var{z} / sqrt (@var{x}^2 + @var{y}^2))
## @var{r} = sqrt (@var{x}^2 + @var{y}^2 + @var{z}^2)
## @end group
## @end example
##
## @end ifnottex
##
## @c FIXME: Remove this note in Octave 9.1 (two releases after 7.1).
## Note: For @sc{matlab} compatibility, this function no longer returns a full
## coordinate matrix when called with a single return argument.
## @seealso{sph2cart, cart2pol, pol2cart}
## @end deftypefn

function [theta, phi, r] = cart2sph (x, y, z)

  if (nargin != 1 && nargin != 3)
    print_usage ();
  endif

  if (nargin == 1)
    if (! (isnumeric (x) && ismatrix (x)))
      error ("cart2sph: matrix input C must be a 2-D numeric array");
    elseif (columns (x) != 3 && numel (x) != 3)
      error ("cart2sph: matrix input C must be a 3-element vector or 3-column array");
    endif

    if (numel (x) == 3)
      z = x(3);
      y = x(2);
      x = x(1);
    else
      z = x(:,3);
      y = x(:,2);
      x = x(:,1);
    endif

  else
    if (! (isnumeric (x) && isnumeric (y) && isnumeric (z)))
      error ("cart2sph: X, Y, Z must be numeric arrays or scalars");
    endif
    [err, x, y, z] = common_size (x, y, z);
    if (err)
      error ("cart2sph: X, Y, Z must be the same size or scalars");
    endif
  endif

  theta = atan2 (y, x);
  phi = atan2 (z, sqrt (x .^ 2 + y .^ 2));
  r = sqrt (x .^ 2 + y .^ 2 + z .^ 2);

endfunction


%!test
%! x = [0, 1, 2];
%! y = [0, 1, 2];
%! z = [0, 1, 2];
%! [t, p, r] = cart2sph (x, y, z);
%! assert (t, [0, pi/4, pi/4], eps);
%! assert (p, [0, 1, 1]*atan (sqrt (0.5)), eps);
%! assert (r, [0, 1, 2]*sqrt (3), eps);

%!test
%! x = [0; 1; 2];
%! y = [0; 1; 2];
%! z = [0; 1; 2];
%! [t, p, r] = cart2sph (x, y, z);
%! assert (t, [0; pi/4; pi/4], eps);
%! assert (p, [0; 1; 1] * atan (sqrt (0.5)), eps);
%! assert (r, [0; 1; 2] * sqrt (3), eps);

%!test
%! x = 0;
%! y = [0, 1, 2];
%! z = [0, 1, 2];
%! [t, p, r] = cart2sph (x, y, z);
%! assert (t, [0, 1, 1] * pi/2, eps);
%! assert (p, [0, 1, 1] * pi/4, eps);
%! assert (r, [0, 1, 2] * sqrt (2), eps);

%!test
%! x = [0, 1, 2];
%! y = 0;
%! z = [0, 1, 2];
%! [t, p, r] = cart2sph (x, y, z);
%! assert (t, [0, 0, 0]);
%! assert (p, [0, 1, 1] * pi/4, eps);
%! assert (r, [0, 1, 2] * sqrt (2), eps);

%!test
%! x = [0, 1, 2];
%! y = [0, 1, 2];
%! z = 0;
%! [t, p, r] = cart2sph (x, y, z);
%! assert (t, [0, 1, 1] * pi/4, eps);
%! assert (p, [0, 0, 0]);
%! assert (r, [0, 1, 2] * sqrt (2), eps);

%!test
%! x = 0;
%! y = 0;
%! z = [0, 1, 2];
%! [t, p, r] = cart2sph (x, y, z);
%! assert (t, [0, 0, 0]);
%! assert (p, [0, 1, 1] * pi/2, eps);
%! assert (r, [0, 1, 2]);

%!test
%! C = [0, 0, 0; 1, 0, 1; 2, 0, 2];
%! [t, p, r] = cart2sph (C);
%! assert (t, [0; 0; 0]);
%! assert (p, [0; 1; 1] * pi/4, eps);
%! assert (r, [0; 1; 2] * sqrt (2), eps);

%!test
%! C = [0, 0, 0; 1, 0, 1; 2, 0, 2; 1, 0, 1];
%! [t, p, r] = cart2sph (C);
%! assert (t, [0; 0; 0; 0]);
%! assert (p, [0; 1; 1; 1] * pi/4, eps);
%! assert (r, [0; 1; 2; 1] * sqrt (2), eps);

%!test
%! [x, y, z] = meshgrid ([0, 1], [0, 1], [0, 1]);
%! [t, p, r] = cart2sph (x, y, z);
%! T(:, :, 1) = [0, 0; pi/2, pi/4];
%! T(:, :, 2) = T(:, :, 1);
%! P(:, :, 1) = zeros (2, 2);
%! P(:, :, 2) = [pi/2, pi/4; pi/4, acos(sqrt(2/3))];
%! R = sqrt (x .^ 2 + y .^ 2 + z .^ 2);
%! assert (t, T, eps);
%! assert (p, P, eps);
%! assert (r, R, eps);

## Test input validation
%!error <Invalid call> cart2sph ()
%!error <Invalid call> cart2sph (1,2)
%!error <matrix input C must be a 2-D numeric array> cart2sph ({1,2,3})
%!error <matrix input C must be a 2-D numeric array> cart2sph (ones (3,3,2))
%!error <matrix input C must be a 3-element> cart2sph ([1,2,3,4])
%!error <matrix input C must be a 3-element> cart2sph ([1,2,3,4; 1,2,3,4; 1,2,3,4])
%!error <must be numeric arrays or scalars> cart2sph ({1,2,3}, [1,2,3], [1,2,3])
%!error <must be numeric arrays or scalars> cart2sph ([1,2,3], {1,2,3}, [1,2,3])
%!error <must be numeric arrays or scalars> cart2sph ([1,2,3], [1,2,3], {1,2,3})
%!error <must be the same size or scalars> cart2sph ([1,2,3], [1,2,3], [1,2,3]')
%!error <must be the same size or scalars> cart2sph (ones (3,3,3), 1, ones (3,2,3))
%!error <must be the same size or scalars> cart2sph (ones (3,3,3), ones (3,2,3), 1)