1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
########################################################################
##
## Copyright (C) 2000-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{zsort} =} cplxpair (@var{z})
## @deftypefnx {} {@var{zsort} =} cplxpair (@var{z}, @var{tol})
## @deftypefnx {} {@var{zsort} =} cplxpair (@var{z}, @var{tol}, @var{dim})
## Sort the numbers @var{z} into complex conjugate pairs ordered by increasing
## real part.
##
## The negative imaginary complex numbers are placed first within each pair.
## All real numbers (those with
## @code{abs (imag (@var{z})) / abs (@var{z}) < @var{tol}}) are placed after
## the complex pairs.
##
## @var{tol} is a weighting factor in the range [0, 1) which determines the
## tolerance of the matching. The default value is @code{100 * eps} and the
## resulting tolerance for a given complex pair is
## @code{@var{tol} * abs (@var{z}(i)))}.
##
## By default the complex pairs are sorted along the first non-singleton
## dimension of @var{z}. If @var{dim} is specified, then the complex pairs are
## sorted along this dimension.
##
## Signal an error if some complex numbers could not be paired. Signal an
## error if all complex numbers are not exact conjugates (to within @var{tol}).
## Note that there is no defined order for pairs with identical real parts but
## differing imaginary parts.
## @c Set example in small font to prevent overfull line
##
## @smallexample
## cplxpair (exp (2i*pi*[0:4]'/5)) == exp (2i*pi*[3; 2; 4; 1; 0]/5)
## @end smallexample
## @end deftypefn
## 2006-05-12 David Bateman - Modified for NDArrays
function zsort = cplxpair (z, tol, dim)
if (nargin < 1)
print_usage ();
endif
if (isempty (z))
zsort = zeros (size (z));
return;
endif
cls = ifelse (isa (z, "single"), "single", "double");
if (nargin < 2 || isempty (tol))
tol = 100*eps (cls);
elseif (! isscalar (tol) || tol < 0 || tol >= 1)
error ("cplxpair: TOL must be a scalar number in the range 0 <= TOL < 1");
endif
nd = ndims (z);
if (nargin < 3)
## Find the first singleton dimension.
sz = size (z);
(dim = find (sz > 1, 1)) || (dim = 1);
else
dim = floor (dim);
if (dim < 1 || dim > nd)
error ("cplxpair: invalid dimension DIM");
endif
endif
## Move dimension to analyze to first position, and convert to a 2-D matrix.
perm = [dim:nd, 1:dim-1];
z = permute (z, perm);
sz = size (z);
n = sz(1);
m = prod (sz) / n;
z = reshape (z, n, m);
## Sort the sequence in terms of increasing real values.
[~, idx] = sort (real (z), 1);
z = z(idx + n * ones (n, 1) * [0:m-1]);
## Put the purely real values at the end of the returned list.
[idxi, idxj] = find (abs (imag (z)) ./ (abs (z) + realmin (cls)) <= tol);
## Force values detected to be real within tolerance to actually be real.
z(idxi + n*(idxj-1)) = real (z(idxi + n*(idxj-1)));
q = sparse (idxi, idxj, 1, n, m);
nr = sum (q, 1);
[~, idx] = sort (q, 1);
midx = idx + rows (idx) * ones (rows (idx), 1) * [0:columns(idx)-1];
z = z(midx);
zsort = z;
## For each remaining z, place the value and its conjugate at the start of
## the returned list, and remove them from further consideration.
for j = 1:m
p = n - nr(j);
for i = 1:2:p
if (i+1 > p)
error ("cplxpair: could not pair all complex numbers");
endif
[v, idx] = min (abs (z(i+1:p,j) - conj (z(i,j))));
if (v >= tol * abs (z(i,j)))
error ("cplxpair: could not pair all complex numbers");
endif
## For pairs, select the one with positive imaginary part and use it and
## it's conjugate, but list the negative imaginary pair first.
if (imag (z(i,j)) > 0)
zsort([i, i+1],j) = [conj(z(i,j)), z(i,j)];
else
zsort([i, i+1],j) = [conj(z(idx+i,j)), z(idx+i,j)];
endif
z(idx+i,j) = z(i+1,j);
endfor
endfor
## Reshape the output matrix.
zsort = ipermute (reshape (zsort, sz), perm);
endfunction
%!demo
%! [ cplxpair(exp(2i*pi*[0:4]'/5)), exp(2i*pi*[3; 2; 4; 1; 0]/5) ]
%!assert (isempty (cplxpair ([])))
%!assert (cplxpair (1), 1)
%!assert (cplxpair ([1+1i, 1-1i]), [1-1i, 1+1i])
%!assert (cplxpair ([1+1i, 1+1i, 1, 1-1i, 1-1i, 2]), ...
%! [1-1i, 1+1i, 1-1i, 1+1i, 1, 2])
%!assert (cplxpair ([1+1i; 1+1i; 1; 1-1i; 1-1i; 2]), ...
%! [1-1i; 1+1i; 1-1i; 1+1i; 1; 2])
%!assert (cplxpair ([0, 1, 2]), [0, 1, 2])
%!shared z,y
%! z = exp (2i*pi*[4; 3; 5; 2; 6; 1; 0]/7);
%! z(2) = conj (z(1));
%! z(4) = conj (z(3));
%! z(6) = conj (z(5));
%!assert (cplxpair (z(randperm (7))), z)
%!assert (cplxpair (z(randperm (7))), z)
%!assert (cplxpair (z(randperm (7))), z)
%!assert (cplxpair ([z(randperm (7)), z(randperm (7))]), [z,z])
%!assert (cplxpair ([z(randperm (7)), z(randperm (7))],[],1), [z,z])
%!assert (cplxpair ([z(randperm (7)).'; z(randperm (7)).'],[],2), [z.';z.'])
%! y = [ -1-1i; -1+1i;-3; -2; 1; 2; 3];
%!assert (cplxpair ([z(randperm (7)), y(randperm (7))]), [z,y])
%!assert (cplxpair ([z(randperm (7)), y(randperm (7)),z(randperm (7))]),
%! [z,y,z])
## Test tolerance
%!assert (cplxpair ([2000 * (1+eps) + 4j; 2000 * (1-eps) - 4j]),
%! [(2000 - 4j); (2000 + 4j)], 100*eps(200))
%!error <could not pair>
%! cplxpair ([2000 * (1+eps) + 4j; 2000 * (1-eps) - 4j], 0);
%!error <could not pair>
%! cplxpair ([2e6 + j; 2e6 - j; 1e-9 * (1 + j); 1e-9 * (1 - 2j)]);
## Test input validation
%!error <Invalid call> cplxpair ()
%!error <cplxpair: TOL must be .* scalar number> cplxpair (1, ones (2,2))
%!error <cplxpair: TOL must be .* in the range 0 <= TOL < 1> cplxpair (1, -1)
%!error <cplxpair: TOL must be .* in the range 0 <= TOL < 1> cplxpair (1, -1)
%!error <invalid dimension DIM> cplxpair (1, [], 3)
|