1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
########################################################################
##
## Copyright (C) 2000-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{q} =} cumtrapz (@var{y})
## @deftypefnx {} {@var{q} =} cumtrapz (@var{x}, @var{y})
## @deftypefnx {} {@var{q} =} cumtrapz (@dots{}, @var{dim})
## Cumulative numerical integration of points @var{y} using the trapezoidal
## method.
##
## @w{@code{cumtrapz (@var{y})}}@ computes the cumulative integral of @var{y}
## along the first non-singleton dimension. Where @code{trapz} reports only
## the overall integral sum, @code{cumtrapz} reports the current partial sum
## value at each point of @var{y}.
##
## When the argument @var{x} is omitted an equally spaced @var{x} vector with
## unit spacing (1) is assumed. @code{cumtrapz (@var{x}, @var{y})} evaluates
## the integral with respect to the spacing in @var{x} and the values in
## @var{y}. This is useful if the points in @var{y} have been sampled
## unevenly.
##
## If the optional @var{dim} argument is given, operate along this dimension.
##
## Application Note: If @var{x} is not specified then unit spacing will be
## used. To scale the integral to the correct value you must multiply by the
## actual spacing value (deltaX).
## @seealso{trapz, cumsum}
## @end deftypefn
function z = cumtrapz (x, y, dim)
if (nargin < 1)
print_usage ();
endif
have_xy = have_dim = false;
if (nargin == 3)
have_xy = true;
have_dim = true;
elseif (nargin == 2)
if (isscalar (y) && ! isscalar (x))
have_dim = true;
dim = y;
else
have_xy = true;
endif
endif
if (have_xy)
nd = ndims (y);
sz = size (y);
else
nd = ndims (x);
sz = size (x);
endif
if (! have_dim)
## Find the first non-singleton dimension.
(dim = find (sz > 1, 1)) || (dim = 1);
else
if (!(isscalar (dim) && dim == fix (dim))
|| !(1 <= dim && dim <= nd))
error ("trapz: DIM must be an integer and a valid dimension");
endif
endif
n = sz(dim);
idx1 = idx2 = {':'}(ones (nd, 1)); # repmat ({':'}, [nd, 1]), but faster
idx1{dim} = 2 : n;
idx2{dim} = 1 : (n - 1);
if (! have_xy)
z = 0.5 * cumsum (x(idx1{:}) + x(idx2{:}), dim);
elseif (isscalar (x))
z = x * 0.5 * cumsum (y(idx1{:}) + y(idx2{:}), dim);
elseif (isvector (x))
if (length (x) != n)
error ("cumtrapz: length of X and length of Y along DIM must match");
endif
## Reshape vector to point along dimension DIM
shape = ones (nd, 1);
shape(dim) = n;
x = reshape (x, shape);
z = 0.5 * cumsum (diff (x) .* (y(idx1{:}) + y(idx2{:})), dim);
else
if (! size_equal (x, y))
error ("cumtrapz: X and Y must have same shape");
endif
z = 0.5 * cumsum (diff (x, 1, dim) .* (y(idx1{:}) + y(idx2{:})), dim);
endif
sz(dim) = 1;
z = cat (dim, zeros (sz), z);
endfunction
%!shared x1, x2, y
%! x1 = [1:5];
%! x2 = [2:2:10];
%! y = [1:5];
%!
%!assert (cumtrapz (y), [0, 1.5, 4, 7.5, 12])
%!assert (cumtrapz (y'), [0, 1.5, 4, 7.5, 12]')
%!assert (cumtrapz (1, y), [0, 1.5, 4, 7.5, 12])
%!assert (cumtrapz (2, y), [0, 3, 8, 15, 24])
%!assert (cumtrapz (x1, y),[0, 1.5, 4, 7.5, 12])
%!assert (cumtrapz (x2, y),[0, 3, 8, 15, 24])
%!assert (cumtrapz (2, y, 2), [0, 3, 8, 15, 24])
%!assert (cumtrapz (x2, y, 2), [0, 3, 8, 15, 24])
%!assert (cumtrapz (y, 1), [0, 0, 0, 0, 0])
%!assert (cumtrapz (2, y, 1), [0, 0, 0, 0, 0])
%!assert (cumtrapz (y', 2), [0, 0, 0, 0, 0]')
%!shared x1, x2, y
%! x1 = [0,0,0;2,2,2];
%! x2 = [0,2,4;0,2,4];
%! y = [1,2,3;4,5,6];
%!
%!assert (cumtrapz (y), [0,0,0;2.5,3.5,4.5])
%!assert (cumtrapz (x1, y), [0,0,0;5,7,9])
%!assert (cumtrapz (y, 1), [0,0,0;2.5,3.5,4.5])
%!assert (cumtrapz (x1, y, 1), [0,0,0;5,7,9])
%!assert (cumtrapz (y, 2), [0,1.5,4;0,4.5,10])
%!assert (cumtrapz (x2, y, 2), [0,3,8;0,9,20])
## Test ND-array implementation
%!shared x1,x2,y
%! x1 = 1:3;
%! x2 = reshape ([0,2,4;0,2,4], [1 2 3]);
%! y = reshape ([1,2,3;4,5,6], [1 2 3]);
%!
%!assert (cumtrapz (y,3), reshape ([0,1.5,4;0,4.5,10],[1 2 3]))
%!assert (cumtrapz (x1,y,3), reshape ([0,1.5,4;0,4.5,10],[1 2 3]))
%!assert (cumtrapz (x2,y,3), reshape ([0,3,8;0,9,20],[1 2 3]))
## Test input validation
%!error <Invalid call> cumtrapz ()
%!error <DIM must be an integer> cumtrapz (1, 2, [1 2])
%!error <DIM must be an integer> cumtrapz (1, 2, 1.5)
%!error <DIM must be .* a valid dimension> cumtrapz (1, 2, 0)
%!error <length of X and length of Y.*must match> cumtrapz ([1 2], [1 2 3])
%!error <X and Y must have same shape> cumtrapz (ones (2,3), ones (2,4))
|