File: curl.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (148 lines) | stat: -rw-r--r-- 5,444 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
########################################################################
##
## Copyright (C) 2009-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {[@var{cx}, @var{cy}, @var{cz}, @var{v}] =} curl (@var{x}, @var{y}, @var{z}, @var{fx}, @var{fy}, @var{fz})
## @deftypefnx {} {[@var{cz}, @var{v}] =} curl (@var{x}, @var{y}, @var{fx}, @var{fy})
## @deftypefnx {} {[@dots{}] =} curl (@var{fx}, @var{fy}, @var{fz})
## @deftypefnx {} {[@dots{}] =} curl (@var{fx}, @var{fy})
## @deftypefnx {} {@var{v} =} curl (@dots{})
## Calculate curl of vector field given by the arrays @var{fx}, @var{fy}, and
## @var{fz} or @var{fx}, @var{fy} respectively.
## @tex
## $$ curl F(x,y,z) = \left( {\partial{F_z} \over \partial{y}} - {\partial{F_y} \over \partial{z}}, {\partial{F_x} \over \partial{z}} - {\partial{F_z} \over \partial{x}}, {\partial{F_y} \over \partial{x}} - {\partial{F_x} \over \partial{y}} \right)$$
## @end tex
## @ifnottex
##
## @example
## @group
##                   / d         d       d         d       d         d     \
## curl F(x,y,z)  =  | -- Fz  -  -- Fy,  -- Fx  -  -- Fz,  -- Fy  -  -- Fx |
##                   \ dy        dz      dz        dx      dx        dy    /
## @end group
## @end example
##
## @end ifnottex
## The coordinates of the vector field can be given by the arguments @var{x},
## @var{y}, @var{z} or @var{x}, @var{y} respectively.  @var{v} calculates the
## scalar component of the angular velocity vector in direction of the z-axis
## for two-dimensional input.  For three-dimensional input the scalar
## rotation is calculated at each grid point in direction of the vector field
## at that point.
## @seealso{divergence, gradient, del2, cross}
## @end deftypefn

function varargout = curl (varargin)

  fidx = 1;
  if (nargin == 2)
    sz = size (varargin{fidx});
    dx = (1:sz(2))(:);
    dy = (1:sz(1))(:);
  elseif (nargin == 3)
    sz = size (varargin{fidx});
    dx = (1:sz(2))(:);
    dy = (1:sz(1))(:);
    dz = (1:sz(3))(:);
  elseif (nargin == 4)
    fidx = 3;
    dx = varargin{1}(1,:);
    dy = varargin{2}(:,1);
  elseif (nargin == 6)
    fidx = 4;
    dx = varargin{1}(1,:,1)(:);
    dy = varargin{2}(:,1,1)(:);
    dz = varargin{3}(1,1,:)(:);
  else
    print_usage ();
  endif

  if (nargin == 4 || nargin == 2)
    if (! size_equal (varargin{fidx}, varargin{fidx + 1}))
      error ("curl: size of X and Y must match");
    elseif (ndims (varargin{fidx}) != 2)
      error ("curl: X and Y must be 2-D matrices");
    elseif ((length (dx) != columns (varargin{fidx}))
         || (length (dy) != rows (varargin{fidx})))
      error ("curl: size of dx and dy must match the respective dimension of X and Y");
    endif

    dFx_dy = gradient (varargin{fidx}.', dy, dx).';
    dFy_dx = gradient (varargin{fidx + 1}, dx, dy);
    rot_z = dFy_dx - dFx_dy;
    av = rot_z / 2;
    if (nargout == 0 || nargout == 1)
      varargout{1} = av;
    else
      varargout{1} = rot_z;
      varargout{2} = av;
    endif

  elseif (nargin == 6 || nargin == 3)
    if (! size_equal (varargin{fidx}, varargin{fidx + 1}, varargin{fidx + 2}))
      error ("curl: size of X, Y, and Z must match");
    elseif (ndims (varargin{fidx}) != 3)
      error ("curl: X, Y, and Z must be 2-D matrices");
    elseif ((length (dx) != size (varargin{fidx}, 2))
         || (length (dy) != size (varargin{fidx}, 1))
         || (length (dz) != size (varargin{fidx}, 3)))
      error ("curl: size of dx, dy, and dz must match the respective dimesion of X, Y, and Z");
    endif

    [~, dFx_dy, dFx_dz] = gradient (varargin{fidx}, dx, dy, dz);
    [dFy_dx, ~, dFy_dz] = gradient (varargin{fidx + 1}, dx, dy, dz);
    [dFz_dx, dFz_dy] = gradient (varargin{fidx + 2}, dx, dy, dz);
    rot_x = dFz_dy - dFy_dz;
    rot_y = dFx_dz - dFz_dx;
    rot_z = dFy_dx - dFx_dy;
    l = sqrt(varargin{fidx}.^2 + varargin{fidx + 1}.^2 + varargin{fidx + 2}.^2);
    av = (rot_x .* varargin{fidx} +
          rot_y .* varargin{fidx + 1} +
          rot_z .* varargin{fidx + 2}) ./ (2 * l);

    if (nargout == 0 || nargout == 1)
      varargout{1} = av;
    else
      varargout{1} = rot_x;
      varargout{2} = rot_y;
      varargout{3} = rot_z;
      varargout{4} = av;
    endif
  endif

endfunction


%!test
%! [X,Y] = meshgrid (-20:20,-22:22);
%! av = curl (2*(X-Y), Y);
%! assert (all (av(:) == 1));
%! [cz,av] = curl (2*(X-Y), Y);
%! assert (all (cz(:) == 2));
%! assert (all (av(:) == 1));
%! [cz,av] = curl (X/2, Y/2, 2*(X-Y), Y);
%! assert (all (cz(:) == 4));
%! assert (all (av(:) == 2));
%! assert (size_equal (X,Y,cz,av));