1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
########################################################################
##
## Copyright (C) 2009-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {[@var{cx}, @var{cy}, @var{cz}, @var{v}] =} curl (@var{x}, @var{y}, @var{z}, @var{fx}, @var{fy}, @var{fz})
## @deftypefnx {} {[@var{cz}, @var{v}] =} curl (@var{x}, @var{y}, @var{fx}, @var{fy})
## @deftypefnx {} {[@dots{}] =} curl (@var{fx}, @var{fy}, @var{fz})
## @deftypefnx {} {[@dots{}] =} curl (@var{fx}, @var{fy})
## @deftypefnx {} {@var{v} =} curl (@dots{})
## Calculate curl of vector field given by the arrays @var{fx}, @var{fy}, and
## @var{fz} or @var{fx}, @var{fy} respectively.
## @tex
## $$ curl F(x,y,z) = \left( {\partial{F_z} \over \partial{y}} - {\partial{F_y} \over \partial{z}}, {\partial{F_x} \over \partial{z}} - {\partial{F_z} \over \partial{x}}, {\partial{F_y} \over \partial{x}} - {\partial{F_x} \over \partial{y}} \right)$$
## @end tex
## @ifnottex
##
## @example
## @group
## / d d d d d d \
## curl F(x,y,z) = | -- Fz - -- Fy, -- Fx - -- Fz, -- Fy - -- Fx |
## \ dy dz dz dx dx dy /
## @end group
## @end example
##
## @end ifnottex
## The coordinates of the vector field can be given by the arguments @var{x},
## @var{y}, @var{z} or @var{x}, @var{y} respectively. @var{v} calculates the
## scalar component of the angular velocity vector in direction of the z-axis
## for two-dimensional input. For three-dimensional input the scalar
## rotation is calculated at each grid point in direction of the vector field
## at that point.
## @seealso{divergence, gradient, del2, cross}
## @end deftypefn
function varargout = curl (varargin)
fidx = 1;
if (nargin == 2)
sz = size (varargin{fidx});
dx = (1:sz(2))(:);
dy = (1:sz(1))(:);
elseif (nargin == 3)
sz = size (varargin{fidx});
dx = (1:sz(2))(:);
dy = (1:sz(1))(:);
dz = (1:sz(3))(:);
elseif (nargin == 4)
fidx = 3;
dx = varargin{1}(1,:);
dy = varargin{2}(:,1);
elseif (nargin == 6)
fidx = 4;
dx = varargin{1}(1,:,1)(:);
dy = varargin{2}(:,1,1)(:);
dz = varargin{3}(1,1,:)(:);
else
print_usage ();
endif
if (nargin == 4 || nargin == 2)
if (! size_equal (varargin{fidx}, varargin{fidx + 1}))
error ("curl: size of X and Y must match");
elseif (ndims (varargin{fidx}) != 2)
error ("curl: X and Y must be 2-D matrices");
elseif ((length (dx) != columns (varargin{fidx}))
|| (length (dy) != rows (varargin{fidx})))
error ("curl: size of dx and dy must match the respective dimension of X and Y");
endif
dFx_dy = gradient (varargin{fidx}.', dy, dx).';
dFy_dx = gradient (varargin{fidx + 1}, dx, dy);
rot_z = dFy_dx - dFx_dy;
av = rot_z / 2;
if (nargout == 0 || nargout == 1)
varargout{1} = av;
else
varargout{1} = rot_z;
varargout{2} = av;
endif
elseif (nargin == 6 || nargin == 3)
if (! size_equal (varargin{fidx}, varargin{fidx + 1}, varargin{fidx + 2}))
error ("curl: size of X, Y, and Z must match");
elseif (ndims (varargin{fidx}) != 3)
error ("curl: X, Y, and Z must be 2-D matrices");
elseif ((length (dx) != size (varargin{fidx}, 2))
|| (length (dy) != size (varargin{fidx}, 1))
|| (length (dz) != size (varargin{fidx}, 3)))
error ("curl: size of dx, dy, and dz must match the respective dimesion of X, Y, and Z");
endif
[~, dFx_dy, dFx_dz] = gradient (varargin{fidx}, dx, dy, dz);
[dFy_dx, ~, dFy_dz] = gradient (varargin{fidx + 1}, dx, dy, dz);
[dFz_dx, dFz_dy] = gradient (varargin{fidx + 2}, dx, dy, dz);
rot_x = dFz_dy - dFy_dz;
rot_y = dFx_dz - dFz_dx;
rot_z = dFy_dx - dFx_dy;
l = sqrt(varargin{fidx}.^2 + varargin{fidx + 1}.^2 + varargin{fidx + 2}.^2);
av = (rot_x .* varargin{fidx} +
rot_y .* varargin{fidx + 1} +
rot_z .* varargin{fidx + 2}) ./ (2 * l);
if (nargout == 0 || nargout == 1)
varargout{1} = av;
else
varargout{1} = rot_x;
varargout{2} = rot_y;
varargout{3} = rot_z;
varargout{4} = av;
endif
endif
endfunction
%!test
%! [X,Y] = meshgrid (-20:20,-22:22);
%! av = curl (2*(X-Y), Y);
%! assert (all (av(:) == 1));
%! [cz,av] = curl (2*(X-Y), Y);
%! assert (all (cz(:) == 2));
%! assert (all (av(:) == 1));
%! [cz,av] = curl (X/2, Y/2, 2*(X-Y), Y);
%! assert (all (cz(:) == 4));
%! assert (all (av(:) == 2));
%! assert (size_equal (X,Y,cz,av));
|