File: integral3.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (395 lines) | stat: -rw-r--r-- 15,196 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
########################################################################
##
## Copyright (C) 2017-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{q} =} integral3 (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb}, @var{za}, @var{zb})
## @deftypefnx {} {@var{q} =} integral3 (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb}, @var{za}, @var{zb}, @var{prop}, @var{val}, @dots{})
##
## Numerically evaluate the three-dimensional integral of @var{f} using
## adaptive quadrature over the three-dimensional domain defined by
## @var{xa}, @var{xb}, @var{ya}, @var{yb}, @var{za}, @var{zb} (scalars may
## be finite or infinite).  Additionally, @var{ya} and @var{yb} may be
## scalar functions of @var{x} and @var{za}, and @var{zb} maybe be scalar
## functions of @var{x} and @var{y}, allowing for integration over
## non-rectangular domains.
##
## @var{f} is a function handle, inline function, or string containing the
## name of the function to evaluate.  The function @var{f} must be of the form
## @math{z = f(x,y,z)}, and all operations must be vectorized such that
## @var{x}, @var{y}, and @var{z} accept array inputs and return array outputs
## of the same size.  (It can be assumed that @var{x}, @var{y}, and @var{z}
## will either be same-size arrays or scalars.)  The underlying integrators
## will input arrays of integration points into @var{f} and/or use internal
## vector expansions to speed computation that can produce unpredictable
## results if @var{f} is not restricted to elementwise operations.  For
## integrands where this is unavoidable, the @qcode("Vectorized") option
## described below may produce more reliable results.
##
## Additional optional parameters can be specified using
## @qcode{"@var{property}", @var{value}} pairs.  Valid properties are:
##
## @table @code
## @item AbsTol
## Define the absolute error tolerance for the quadrature.  The default
## value is 1e-10 (1e-5 for single).
##
## @item RelTol
## Define the relative error tolerance for the quadrature.  The default
## value is 1e-6 (1e-4 for single).
##
## @item Method
## Specify the two-dimensional integration method to be used, with valid
## options being @qcode{"auto"} (default), @qcode{"tiled"}, or
## @qcode{"iterated"}.  When using @qcode{"auto"}, Octave will choose the
## @qcode{"tiled"} method unless any of the integration limits are infinite.
##
## @item Vectorized
## Enable or disable vectorized integration.  A value of @code{false} forces
## Octave to use only scalar inputs when calling the integrand, which enables
## integrands @math{f(x,y,z)} that have not been vectorized or only accept
## scalar values of @var{x}, @var{y}, or @var{z}.  The default value is
## @code{true}.  Note that this is achieved by wrapping @math{f(x,y,z)} with
## the function @code{arrayfun}, which may significantly decrease computation
## speed.
## @end table
##
## Adaptive quadrature is used to minimize the estimate of error until the
## following is satisfied:
## @tex
## $$error \leq \max \left( AbsTol, RelTol\cdot\vert q\vert \right)$$
## @end tex
## @ifnottex
##
## @example
## @group
##         @var{error} <= max (@var{AbsTol}, @var{RelTol}*|@var{q}|)
## @end group
## @end example
##
## @end ifnottex
##
## @var{err} is an approximate bound on the error in the integral
## @code{abs (@var{q} - @var{I})}, where @var{I} is the exact value of the
## integral.
##
## Example 1 : integrate over a rectangular volume
##
## @example
## @group
## @var{f} = @@(@var{x},@var{y},@var{z}) ones (size (@var{x}));
## @var{q} = integral3 (@var{f}, 0, 1, 0, 1, 0, 1)
##   @result{} @var{q} =  1.00000
## @end group
## @end example
##
## For this constant-value integrand, the result is a volume which is just
## @code{@var{Length} * @var{Width} * @var{Height}}.
##
## Example 2 : integrate over a spherical volume
##
## @example
## @group
## @var{f} = @@(@var{x},@var{y}) ones (size (@var{x}));
## @var{ymax} = @@(@var{x}) sqrt (1 - @var{x}.^2);
## @var{zmax} = @@(@var{x},@var{y}) sqrt (1 - @var{x}.^2 - @var{y}.^2);
## @var{q} = integral3 (@var{f}, 0, 1, 0, @var{ymax}, 0, @var{zmax})
##   @result{} @var{q} =  0.52360
## @end group
## @end example
##
## For this constant-value integrand, the result is a volume which is 1/8th
## of a unit sphere or @code{1/8 * 4/3 * pi}.
##
## Example 3 : integrate a non-vectorized function over a cubic volume
##
## @example
## @group
## @var{f} = @@(@var{x},@var{y}) sinc (@var{x}) * sinc (@var{y}), * sinc (@var{z});
## @var{q} = integral3 (@var{f}, -1, 1, -1, 1, -1, 1)
##   @result{} @var{q} =  14.535  (incorrect)
## @var{q} = integral3 (@var{f}, -1, 1, -1, 1, -1, 1, "Vectorized", false)
##   @result{} @var{q} =  1.6388 (correct)
## @var{f} = @@(@var{x},@var{y},@var{z}) sinc (@var{x}) .* sinc (@var{y}), .* sinc (@var{z});
## @var{q} = integral3 (@var{f}, -1, 1, -1, 1, -1, 1)
##   @result{} @var{q} =  1.6388  (correct)
## @end group
## @end example
##
## The first result is incorrect as the non-elementwise operator between the
## sinc functions in @var{f} create unintended matrix multiplications between
## the internal integration arrays used by @code{integral3}.  In the second
## result, setting @qcode{"Vectorized"} to false forces @code{integral3} to
## perform scalar internal operations to compute the integral, resulting in
## the correct numerical result at the cost of about a 30x increase in
## computation time. In the third result, vectorizing the integrand @var{f}
## using the elementwise multiplication operator gets the correct result
## without increasing computation time.
##
## Programming Notes: If there are singularities within the integration region
## it is best to split the integral and place the singularities on the
## boundary.
##
## Known @sc{matlab} incompatibility: If tolerances are left unspecified, and
## any integration limits are of type @code{single}, then Octave's integral
## functions automatically reduce the default absolute and relative error
## tolerances as specified above.  If tighter tolerances are desired they
## must be specified.  @sc{matlab} leaves the tighter tolerances appropriate
## for @code{double} inputs in place regardless of the class of the
## integration limits.
##
## Reference: @nospell{L.F. Shampine},
## @cite{@sc{matlab} program for quadrature in 2D}, Applied Mathematics and
## Computation, pp.@: 266--274, Vol 1, 2008.
##
## @seealso{triplequad, integral, quad, quadgk, quadv, quadl,
##          quadcc, trapz, integral2, quad2d, dblquad}
## @end deftypefn

function q = integral3 (f, xa, xb, ya, yb, za, zb, varargin)

  if (nargin < 7 || mod (nargin, 2) == 0)
    print_usage ();
  endif

  if (! is_function_handle (f))
    print_usage ();
  endif

  if (! (isreal (xa) && isscalar (xa) && isreal (xb) && isscalar (xb)))
    print_usage ();
  endif

  ## Check for single or double limits to set appropriate default tolerance.
  issingle = (isa ([xa, xb], "single")
              || (! is_function_handle (ya) && isa (ya, "single"))
              || (! is_function_handle (yb) && isa (yb, "single"))
              || (! is_function_handle (za) && isa (za, "single"))
              || (! is_function_handle (zb) && isa (zb, "single")));

  ## Communicate to downstream quadrature routines that at least one limit of
  ## integration was of single type by casting xa, xb to single.
  if (issingle)
    xa = single (xa);
    xb = single (xb);
  endif

  ## Set default tolerances, and then update with any specified parameters.
  if (issingle)
    abstol = 1e-5;
    reltol = 1e-4;
  else
    abstol = 1e-10;
    reltol = 1e-6;
  endif

  method = "auto";
  vectorized = true;
  idx = 1;
  while (idx < nargin - 7)
    prop = varargin{idx++};
    if (! ischar (prop))
      error ("integral3: property PROP must be a string");
    endif

    switch (lower (prop))
      case "abstol"
        abstol = varargin{idx++};
        if (! (isnumeric (abstol) && isscalar (abstol) && abstol >= 0))
          error ("integral3: AbsTol value must be a numeric scalar >= 0");
        endif

      case "reltol"
        reltol = varargin{idx++};
        if (! (isnumeric (reltol) && isscalar (reltol) && reltol >= 0))
          error ("integral3: RelTol value must be a numeric scalar >= 0");
        endif

      case "method"
        method = lower (varargin{idx++});
        if (! any (strcmp (method, {"auto", "iterated", "tiled"})))
          error ("integral3 : unrecognized method '%s'", method);
        endif

      case "vectorized"
        vectorized = varargin{idx++};
        if (! (isscalar (vectorized) && isreal (vectorized)))
          error ('integral3: Vectorized must be a logical value');
        endif

      otherwise
        error ("integral3: unknown property '%s'", prop);

    endswitch
  endwhile

  if (strcmp (method, "auto"))
    if (isinf (xa) || isinf (xb)
        || (! is_function_handle (ya) && isinf (ya))
        || (! is_function_handle (yb) && isinf (yb))
        || (! is_function_handle (za) && isinf (za))
        || (! is_function_handle (zb) && isinf (zb)))
      method = "iterated";
    else
      method = "tiled";
    endif
  endif

  ## check upper and lower bounds of y
  if (! is_function_handle (ya))
    if (! (isreal (ya) && isscalar (ya)))
      error ("integral3: YA must be a real scalar or a function");
    endif
    ya = @(x) ya * ones (size (x));
  endif
  if (! is_function_handle (yb))
    if (! (isreal (yb) && isscalar (yb)))
      error ("integral3: YB must be a real scalar or a function");
    endif
    yb = @(x) yb * ones (size (x));
  endif

  ## check upper and lower bounds of z
  if (! is_function_handle (za))
    if (! (isreal (za) && isscalar (za)))
      error ("integral3: ZA must be a real scalar or a function");
    endif
    za = @(x, y) za * ones (size (y));
  endif
  if (! is_function_handle (zb))
    if (! (isreal (zb) && isscalar (zb)))
      error ("integral3: ZB must be a real scalar or a function");
    endif
    zb = @(x, y) zb * ones (size (y));
  endif

  finner = @(x) inner (x, f, ya, yb, za, zb, vectorized, method, abstol, reltol);
  q = quadcc (finner, xa, xb, [abstol, reltol]);

endfunction

function q = inner (x, f, ya, yb, za, zb, vectorized, method, abstol, reltol)

  q = zeros (size (x));
  for i = 1 : length (x)
    za2 = @(y) za(x(i), y);
    zb2 = @(y) zb(x(i), y);
    f2 = @(y, z) f(x(i), y, z);
    if (! vectorized)
      f2 = @(y, z) arrayfun (f2, y, z);
    endif
    if (strcmp (method, "iterated"))
      finner_iter = @(y) inner_iterated (y, f2, za2, zb2, abstol, reltol);
      q(i) = quadcc (finner_iter, ya(x(i)), yb(x(i)), [abstol, reltol]);
    else
      q(i) = quad2d (f2, ya(x(i)), yb(x(i)), za2, zb2,
                     "AbsTol", abstol, "RelTol", reltol);
    endif
  endfor

endfunction

function q = inner_iterated (y, f2, za2, zb2, abstol, reltol)
  q = zeros (size (y));
  for i = 1 : length (y)
    q(i) = quadcc (@(z) f2(y(i), z), za2(y(i)), zb2(y(i)), [abstol, reltol]);
  endfor
endfunction


## method tests
%!shared f
%! f = @(x, y, z) x .* y .* z;

%!assert (integral3 (f, 0, 1, 0, 1, 0, 1), 0.125, 1e-10)
%!assert (integral3 (f, 0, 1, 0, 1, 0, 1, "method", "tiled"), 0.125, 1e-10)
%!assert (integral3 (f, 0, 1, 0, 1, 0, 1, "method", "iterated"), 0.125, 1e-10)
%!assert (integral3 (f, 0, 1, 0, 1, 0, 1, "method", "auto"), 0.125, 1e-10)

## vectorized = false test
%!test
%! f = @(x, y, z) x * y * z;
%! assert (integral3 (f, 0, 1, 0, 1, 0, 1, "vectorized", false), 0.125, 1e-10);

## tolerance tests
%!test
%! f = @(x, y, z) 2 * x.^2 + 3 * y.^2 + 4 * z.^2;
%!assert (integral3 (f, 0, 5, -5, 0, 0, 5, "AbsTol", 1e-9), 9375, 1e-9)
%!assert (integral3 (f, 0, 5, -5, 0, 0, 5, "RelTol", 1e-5), 9375, -1e-5)
%!assert (integral3 (f, 0, 5, -5, 0, 0, 5, "RelTol", 1e-6, "AbsTol", 1e-9),
%!        9375, 1e-9)

## non-rectangular region
## This test is too slow with "iterated" method
%!test
%! f = @(x,y,z) 1 ./ (x + y + z);
%! ymax = @(x) 1 - x;
%! zmax = @(x, y) 1 - x - y;
%! assert (integral3 (f, 0, 1, 0, ymax, 0, zmax, "method", "tiled"),
%!         0.25, 1e-6);

## Test input validation
%!error integral3
%!error integral3 (@plus)
%!error integral3 (@plus, 1)
%!error integral3 (@plus, 1, 2)
%!error integral3 (@plus, 1, 2, 3)
%!error integral3 (@plus, 1, 2, 3, 4)
%!error integral3 (@plus, 1, 2, 3, 4, 5)
%!error integral3 (@plus, 1, 2, 3, 4, 5, 6, "foo")
%!error integral3 (0, 1, 2, 3, 4, 5, 6)          # f must be a function handle
%!error integral3 (@plus, 1i, 2, 3, 4, 5, 6)     # real limits
%!error integral3 (@plus, 1, 2i, 3, 4, 5, 6)     # real limits
%!error integral3 (@plus, [1 1], 2, 3, 4, 5, 6)  # scalar limits
%!error integral3 (@plus, 1, [2 2], 3, 4, 5, 6)  # scalar limits
%!error <property PROP must be a string>
%! integral3 (@plus, 1, 2, 3, 4, 5, 6, 99, "bar");
%!error <AbsTol value must be a numeric>
%! integral3 (@plus, 1, 2, 3, 4, 5, 6, "AbsTol", "foo");
%!error <AbsTol value must be a .* scalar>
%! integral3 (@plus, 1, 2, 3, 4, 5, 6, "AbsTol", [1, 2]);
%!error <AbsTol value must be.* .= 0>
%! integral3 (@plus, 1, 2, 3, 4, 5, 6, "AbsTol", -1);
%!error <RelTol value must be a numeric>
%! integral3 (@plus, 1, 2, 3, 4, 5, 6, "RelTol", "foo");
%!error <RelTol value must be a .* scalar>
%! integral3 (@plus, 1, 2, 3, 4, 5, 6, "RelTol", [1, 2]);
%!error <RelTol value must be.* .= 0>
%! integral3 (@plus, 1, 2, 3, 4, 5, 6, "RelTol", -1);
%!error <unrecognized method 'foo'>
%! integral3 (@plus,1,2,3,4,5,6, "method", "foo");
%!error <Vectorized must be a logical value>
%! integral3 (@plus,1,2,3,4,5,6, "Vectorized", [0 1]);
%!error <Vectorized must be a logical value>
%! integral3 (@plus,1,2,3,4,5,6, "Vectorized", {true});
%!error <unknown property 'foo'>
%! integral3 (@plus, 1, 2, 3, 4, 6, 6, "foo", "bar");
%!error <YA must be a real scalar> integral3 (@plus, 1, 2, 3i, 4, 5, 6)
%!error <YA must be a real scalar> integral3 (@plus, 1, 2, [3 3], 4, 5, 6)
%!error <YB must be a real scalar> integral3 (@plus, 1, 2, 3, 4i, 5, 6)
%!error <YB must be a real scalar> integral3 (@plus, 1, 2, 3, [4 4], 5, 6)
%!error <ZA must be a real scalar> integral3 (@plus, 1, 2, 3, 4, 5i, 6)
%!error <ZA must be a real scalar> integral3 (@plus, 1, 2, 3, 4, [5 5], 6)
%!error <ZB must be a real scalar> integral3 (@plus, 1, 2, 3, 4, 5, 6i)
%!error <ZB must be a real scalar> integral3 (@plus, 1, 2, 3, 4, 5, [6 6])