File: interp3.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (310 lines) | stat: -rw-r--r-- 11,291 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
########################################################################
##
## Copyright (C) 2007-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{vi} =} interp3 (@var{x}, @var{y}, @var{z}, @var{v}, @var{xi}, @var{yi}, @var{zi})
## @deftypefnx {} {@var{vi} =} interp3 (@var{v}, @var{xi}, @var{yi}, @var{zi})
## @deftypefnx {} {@var{vi} =} interp3 (@var{v}, @var{n})
## @deftypefnx {} {@var{vi} =} interp3 (@var{v})
## @deftypefnx {} {@var{vi} =} interp3 (@dots{}, @var{method})
## @deftypefnx {} {@var{vi} =} interp3 (@dots{}, @var{method}, @var{extrapval})
##
## Three-dimensional interpolation.
##
## Interpolate numeric reference data @var{x}, @var{y}, @var{z}, @var{v} to
## determine @var{vi} at the coordinates @var{xi}, @var{yi}, @var{zi}.  The
## reference data @var{x}, @var{y}, @var{z} can be matrices, as returned by
## @code{meshgrid}, in which case the sizes of @var{x}, @var{y}, @var{z}, and
## @var{v} must be equal.  If @var{x}, @var{y}, @var{z} are vectors describing
## a cubic grid then @code{length (@var{x}) == columns (@var{v})},
## @code{length (@var{y}) == rows (@var{v})}, and
## @code{length (@var{z}) == size (@var{v}, 3)}.  In either case the input
## data must be strictly monotonic.
##
## If called without @var{x}, @var{y}, @var{z}, and just a single reference
## data matrix @var{v}, the 3-D region
## @code{@var{x} = 1:columns (@var{v}), @var{y} = 1:rows (@var{v}),
## @var{z} = 1:size (@var{v}, 3)} is assumed.
## This saves memory if the grid is regular and the distance between points is
## not important.
##
## If called with a single reference data matrix @var{v} and a refinement
## value @var{n}, then perform interpolation over a 3-D grid where each
## original interval has been recursively subdivided @var{n} times.  This
## results in @code{2^@var{n}-1} additional points for every interval in the
## original grid.  If @var{n} is omitted a value of 1 is used.  As an
## example, the interval [0,1] with @code{@var{n}==2} results in a refined
## interval with points at [0, 1/4, 1/2, 3/4, 1].
##
## The interpolation @var{method} is one of:
##
## @table @asis
## @item @qcode{"nearest"}
## Return the nearest neighbor.
##
## @item @qcode{"linear"} (default)
## Linear interpolation from nearest neighbors.
##
## @item @qcode{"cubic"}
## Piecewise cubic Hermite interpolating polynomial---shape-preserving
## interpolation with smooth first derivative (not implemented yet).
##
## @item @qcode{"spline"}
## Cubic spline interpolation---smooth first and second derivatives
## throughout the curve.
## @end table
##
## @var{extrapval} is a scalar number.  It replaces values beyond the endpoints
## with @var{extrapval}.  Note that if @var{extrapval} is used, @var{method}
## must be specified as well.  If @var{extrapval} is omitted and the
## @var{method} is @qcode{"spline"}, then the extrapolated values of the
## @qcode{"spline"} are used.  Otherwise the default @var{extrapval} value for
## any other @var{method} is @qcode{"NA"}.
## @seealso{interp1, interp2, interpn, meshgrid}
## @end deftypefn

## FIXME: Need to add support for 'cubic' method (maybe change interpn).

function vi = interp3 (varargin)

  narginchk (1,9);

  method = "linear";
  extrapval = [];
  nargs = nargin;

  if (! isnumeric (varargin{1}))
    error ("interp3: input reference arrays must be numeric");
  endif

  if (nargs > 1 && ischar (varargin{end-1}))
    if (! isnumeric (varargin{end}) || ! isscalar (varargin{end}))
      error ("interp3: EXTRAPVAL must be a numeric scalar");
    endif
    extrapval = varargin{end};
    method = varargin{end-1};
    nargs -= 2;
  elseif (ischar (varargin{end}))
    method = varargin{end};
    nargs -= 1;
  endif

  if (method(1) == "*")
    warning ("interp3: ignoring unsupported '*' flag to METHOD");
    method(1) = [];
  endif
  method = validatestring (method, {"nearest", "linear", "cubic", "spline"});

  if (nargs < 3)
    ## Calling form interp3 (v) OR interp3 (v, n)
    v = varargin{1};
    if (ndims (v) != 3)
      error ("interp3: V must be a 3-D array of values");
    endif
    n = varargin(2:nargs);
    v = permute (v, [2, 1, 3]);
    if (isempty (extrapval))
      vi = interpn (v, n{:}, method);
    else
      vi = interpn (v, n{:}, method, extrapval);
    endif

  elseif (nargs == 4 && ! isvector (varargin{1}))
    ## Calling form interp3 (v, xi, yi, zi)
    v = varargin{1};
    if (ndims (v) != 3)
      error ("interp3: V must be a 3-D array of values");
    endif
    xi = varargin(2:4);
    if (any (! cellfun (@isvector, xi)))
      ## Meshgridded values rather than vectors
      if (! size_equal (xi{:}))
        error ("interp3: XI, YI, and ZI dimensions must be equal");
      endif
      for i = 1 : 3
        xi{i} = permute (xi{i}, [2, 1, 3]);
      endfor
    endif
    v = permute (v, [2, 1, 3]);
    if (isempty (extrapval))
      vi = interpn (v, xi{:}, method);
    else
      vi = interpn (v, xi{:}, method, extrapval);
    endif

  elseif (nargs == 7)
    ## Calling form interp3 (x, y, z, v, xi, yi, zi)
    v = varargin{4};
    if (ndims (v) != 3)
      error ("interp3: V must be a 3-D array of values");
    endif
    x = varargin(1:3);
    if (any (! cellfun (@isvector, x)))
      ## Meshgridded values rather than vectors
      if (! size_equal (x{:}, v))
        error ("interp3: X, Y, Z, and V dimensions must be equal");
      endif
      for i = 1 : 3
        x{i} = permute (x{i}, [2, 1, 3]);
      endfor
    endif
    xi = varargin(5:7);
    if (any (! cellfun (@isvector, xi)))
      ## Meshgridded values rather than vectors
      if (! size_equal (xi{:}))
        error ("interp3: XI, YI, and ZI dimensions must be equal");
      endif
      for i = 1 : 3
        xi{i} = permute (xi{i}, [2, 1, 3]);
      endfor
    endif
    v = permute (v, [2, 1, 3]);
    if (isempty (extrapval))
      vi = interpn (x{:}, v, xi{:}, method);
    else
      vi = interpn (x{:}, v, xi{:}, method, extrapval);
    endif

  else
    error ("interp3: wrong number or incorrectly formatted input arguments");
  endif

  if (! isvector (vi))
    vi = ipermute (vi, [2, 1, 3]);
  endif

endfunction


## FIXME: Need some demo blocks here to show off the function like interp2.m.

%!test  # basic test
%! x = y = z = -1:1;  y = y + 2;
%! f = @(x,y,z) x.^2 - y - z.^2;
%! [xx, yy, zz] = meshgrid (x, y, z);
%! v = f (xx,yy,zz);
%! xi = yi = zi = -1:0.5:1;  yi = yi + 2.1;
%! [xxi, yyi, zzi] = meshgrid (xi, yi, zi);
%! vi = interp3 (x, y, z, v, xxi, yyi, zzi);
%! [xxi, yyi, zzi] = ndgrid (yi, xi, zi);
%! vi2 = interpn (y, x, z, v, xxi, yyi, zzi);
%! assert (vi, vi2, 10*eps);

%!test  # meshgridded xi, yi, zi
%! x = z = 1:2;  y = 1:3;
%! v = ones ([3,2,2]);  v(:,2,1) = [7;5;4];  v(:,1,2) = [2;3;5];
%! xi = zi = .6:1.6;  yi = 1;
%! [xxi3, yyi3, zzi3] = meshgrid (xi, yi, zi);
%! [xxi, yyi, zzi] = ndgrid (yi, xi, zi);
%! vi = interp3 (x, y, z, v, xxi3, yyi3, zzi3, "nearest");
%! vi2 = interpn (y, x, z, v, xxi, yyi, zzi, "nearest");
%! assert (vi, vi2);

%!test  # vector xi, yi, zi
%! x = z = 1:2;  y = 1:3;
%! v = ones ([3,2,2]);  v(:,2,1) = [7;5;4];  v(:,1,2) = [2;3;5];
%! xi = zi = .6:1.6;  yi = 1;
%! vi = interp3 (x, y, z, v, xi, yi, zi, "nearest");
%! vi2 = interpn (y, x, z, v, yi, xi, zi, "nearest");
%! assert (vi, vi2);

%!test  # vector xi+1 with extrap value
%! x = z = 1:2;  y = 1:3;
%! v = ones ([3,2,2]);  v(:,2,1) = [7;5;4];  v(:,1,2) = [2;3;5];
%! xi = zi = .6:1.6;  yi = 1;
%! vi = interp3 (x, y, z, v, xi+1, yi, zi, "nearest", 3);
%! vi2 = interpn (y, x, z, v, yi, xi+1, zi, "nearest", 3);
%! assert (vi, vi2);

%!test  # input value matrix--no x,y,z
%! x = z = 1:2;  y = 1:3;
%! v = ones ([3,2,2]);  v(:,2,1) = [7;5;4];  v(:,1,2) = [2;3;5];
%! xi = zi = .6:1.6;  yi = 1;
%! vi = interp3 (v, xi, yi, zi, "nearest");
%! vi2 = interpn (v, yi, xi, zi, "nearest");
%! assert (vi, vi2);

%!test  # input value matrix--no x,y,z, with extrap value
%! x = z = 1:2;  y = 1:3;
%! v = ones ([3,2,2]);  v(:,2,1) = [7;5;4];  v(:,1,2) = [2;3;5];
%! xi = zi = .6:1.6;  yi = 1;
%! vi = interp3 (v, xi, yi, zi, "nearest", 3);
%! vi2 = interpn (v, yi, xi, zi, "nearest", 3);
%! assert (vi, vi2);

%!test  # extrapolation
%! X = [0,0.5,1];  Y=X;  Z=X;
%! V = zeros (3,3,3);
%! V(:,:,1) = [1 3 5; 3 5 7; 5 7 9];
%! V(:,:,2) = V(:,:,1) + 2;
%! V(:,:,3) = V(:,:,2) + 2;
%! tol = 10 * eps;
%! x = y = z = [-0.1,0,0.1];
%! assert (interp3 (X,Y,Z,V,x,y,z,"spline"), [-0.2, 1.0, 2.2], tol);
%! assert (interp3 (X,Y,Z,V,x,y,z,"linear"), [NA, 1.0, 2.2], tol);
%! assert (interp3 (X,Y,Z,V,x,y,z,"spline", 0), [0, 1.0, 2.2], tol);
%! assert (interp3 (X,Y,Z,V,x,y,z,"linear", 0), [0, 1.0, 2.2], tol);

%!shared z, zout, tol
%! z = zeros (3, 3, 3);
%! zout = zeros (5, 5, 5);
%! z(:,:,1) = [1 3 5; 3 5 7; 5 7 9];
%! z(:,:,2) = z(:,:,1) + 2;
%! z(:,:,3) = z(:,:,2) + 2;
%! for n = 1:5
%!   zout(:,:,n) = [1 2 3 4 5;
%!                  2 3 4 5 6;
%!                  3 4 5 6 7;
%!                  4 5 6 7 8;
%!                  5 6 7 8 9] + (n-1);
%! endfor
%! tol = 10 * eps;
%!
%!assert (interp3 (z), zout, tol)
%!assert (interp3 (z, "linear"), zout, tol)
%!assert (interp3 (z, "spline"), zout, tol)

%!test <*57450>
%! [x, y, z] = meshgrid (1:10);
%! v = x;
%! xi = yi = zi = linspace (1, 10, 20).';
%! vi = interp3 (x, y, z, v, xi, yi, zi);
%! assert (size (vi), [20, 1]);

## Test input validation
%!error <not enough input arguments> interp3 ()
%!error <input reference arrays must be numeric> interp3 ({1})
%!error <input reference arrays must be numeric> interp3 (true)
%!error <input reference arrays must be numeric> interp3 (struct())
%!error <EXTRAPVAL must be a numeric scalar> interp3 (1,2,3,4,1,2,3,"linear", {1})
%!error <EXTRAPVAL must be a numeric scalar> interp3 (1,2,3,4,1,2,3,"linear", ones (2,2))
%!warning <ignoring unsupported '\*' flag> interp3 (rand (3,3,3), 1, "*linear");
%!error <V must be a 3-D array> interp3 (ones (2,2))
%!error <V must be a 3-D array> interp3 (ones (2,2), 1,1,1)
%!error <XI, YI, and ZI dimensions must be equal> interp3 (ones (2,2,2), 1,1, ones (2,2))
%!error <V must be a 3-D array> interp3 (1:2, 1:2, 1:2, ones (2,2), 1,1,1)
%!error <X, Y, Z, and V dimensions must be equal> interp3 (ones (1,2,2), ones (2,2,2), ones (2,2,2), ones (2,2,2), 1,1,1)
%!error <XI, YI, and ZI dimensions must be equal> interp3 (1:2, 1:2, 1:2, rand (2,2,2), 1,1, ones (2,2))
%!error <wrong number .* input arguments> interp3 (1:2, 1:2, 1:2)