1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
|
########################################################################
##
## Copyright (C) 2007-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{vi} =} interp3 (@var{x}, @var{y}, @var{z}, @var{v}, @var{xi}, @var{yi}, @var{zi})
## @deftypefnx {} {@var{vi} =} interp3 (@var{v}, @var{xi}, @var{yi}, @var{zi})
## @deftypefnx {} {@var{vi} =} interp3 (@var{v}, @var{n})
## @deftypefnx {} {@var{vi} =} interp3 (@var{v})
## @deftypefnx {} {@var{vi} =} interp3 (@dots{}, @var{method})
## @deftypefnx {} {@var{vi} =} interp3 (@dots{}, @var{method}, @var{extrapval})
##
## Three-dimensional interpolation.
##
## Interpolate numeric reference data @var{x}, @var{y}, @var{z}, @var{v} to
## determine @var{vi} at the coordinates @var{xi}, @var{yi}, @var{zi}. The
## reference data @var{x}, @var{y}, @var{z} can be matrices, as returned by
## @code{meshgrid}, in which case the sizes of @var{x}, @var{y}, @var{z}, and
## @var{v} must be equal. If @var{x}, @var{y}, @var{z} are vectors describing
## a cubic grid then @code{length (@var{x}) == columns (@var{v})},
## @code{length (@var{y}) == rows (@var{v})}, and
## @code{length (@var{z}) == size (@var{v}, 3)}. In either case the input
## data must be strictly monotonic.
##
## If called without @var{x}, @var{y}, @var{z}, and just a single reference
## data matrix @var{v}, the 3-D region
## @code{@var{x} = 1:columns (@var{v}), @var{y} = 1:rows (@var{v}),
## @var{z} = 1:size (@var{v}, 3)} is assumed.
## This saves memory if the grid is regular and the distance between points is
## not important.
##
## If called with a single reference data matrix @var{v} and a refinement
## value @var{n}, then perform interpolation over a 3-D grid where each
## original interval has been recursively subdivided @var{n} times. This
## results in @code{2^@var{n}-1} additional points for every interval in the
## original grid. If @var{n} is omitted a value of 1 is used. As an
## example, the interval [0,1] with @code{@var{n}==2} results in a refined
## interval with points at [0, 1/4, 1/2, 3/4, 1].
##
## The interpolation @var{method} is one of:
##
## @table @asis
## @item @qcode{"nearest"}
## Return the nearest neighbor.
##
## @item @qcode{"linear"} (default)
## Linear interpolation from nearest neighbors.
##
## @item @qcode{"cubic"}
## Piecewise cubic Hermite interpolating polynomial---shape-preserving
## interpolation with smooth first derivative (not implemented yet).
##
## @item @qcode{"spline"}
## Cubic spline interpolation---smooth first and second derivatives
## throughout the curve.
## @end table
##
## @var{extrapval} is a scalar number. It replaces values beyond the endpoints
## with @var{extrapval}. Note that if @var{extrapval} is used, @var{method}
## must be specified as well. If @var{extrapval} is omitted and the
## @var{method} is @qcode{"spline"}, then the extrapolated values of the
## @qcode{"spline"} are used. Otherwise the default @var{extrapval} value for
## any other @var{method} is @qcode{"NA"}.
## @seealso{interp1, interp2, interpn, meshgrid}
## @end deftypefn
## FIXME: Need to add support for 'cubic' method (maybe change interpn).
function vi = interp3 (varargin)
narginchk (1,9);
method = "linear";
extrapval = [];
nargs = nargin;
if (! isnumeric (varargin{1}))
error ("interp3: input reference arrays must be numeric");
endif
if (nargs > 1 && ischar (varargin{end-1}))
if (! isnumeric (varargin{end}) || ! isscalar (varargin{end}))
error ("interp3: EXTRAPVAL must be a numeric scalar");
endif
extrapval = varargin{end};
method = varargin{end-1};
nargs -= 2;
elseif (ischar (varargin{end}))
method = varargin{end};
nargs -= 1;
endif
if (method(1) == "*")
warning ("interp3: ignoring unsupported '*' flag to METHOD");
method(1) = [];
endif
method = validatestring (method, {"nearest", "linear", "cubic", "spline"});
if (nargs < 3)
## Calling form interp3 (v) OR interp3 (v, n)
v = varargin{1};
if (ndims (v) != 3)
error ("interp3: V must be a 3-D array of values");
endif
n = varargin(2:nargs);
v = permute (v, [2, 1, 3]);
if (isempty (extrapval))
vi = interpn (v, n{:}, method);
else
vi = interpn (v, n{:}, method, extrapval);
endif
elseif (nargs == 4 && ! isvector (varargin{1}))
## Calling form interp3 (v, xi, yi, zi)
v = varargin{1};
if (ndims (v) != 3)
error ("interp3: V must be a 3-D array of values");
endif
xi = varargin(2:4);
if (any (! cellfun (@isvector, xi)))
## Meshgridded values rather than vectors
if (! size_equal (xi{:}))
error ("interp3: XI, YI, and ZI dimensions must be equal");
endif
for i = 1 : 3
xi{i} = permute (xi{i}, [2, 1, 3]);
endfor
endif
v = permute (v, [2, 1, 3]);
if (isempty (extrapval))
vi = interpn (v, xi{:}, method);
else
vi = interpn (v, xi{:}, method, extrapval);
endif
elseif (nargs == 7)
## Calling form interp3 (x, y, z, v, xi, yi, zi)
v = varargin{4};
if (ndims (v) != 3)
error ("interp3: V must be a 3-D array of values");
endif
x = varargin(1:3);
if (any (! cellfun (@isvector, x)))
## Meshgridded values rather than vectors
if (! size_equal (x{:}, v))
error ("interp3: X, Y, Z, and V dimensions must be equal");
endif
for i = 1 : 3
x{i} = permute (x{i}, [2, 1, 3]);
endfor
endif
xi = varargin(5:7);
if (any (! cellfun (@isvector, xi)))
## Meshgridded values rather than vectors
if (! size_equal (xi{:}))
error ("interp3: XI, YI, and ZI dimensions must be equal");
endif
for i = 1 : 3
xi{i} = permute (xi{i}, [2, 1, 3]);
endfor
endif
v = permute (v, [2, 1, 3]);
if (isempty (extrapval))
vi = interpn (x{:}, v, xi{:}, method);
else
vi = interpn (x{:}, v, xi{:}, method, extrapval);
endif
else
error ("interp3: wrong number or incorrectly formatted input arguments");
endif
if (! isvector (vi))
vi = ipermute (vi, [2, 1, 3]);
endif
endfunction
## FIXME: Need some demo blocks here to show off the function like interp2.m.
%!test # basic test
%! x = y = z = -1:1; y = y + 2;
%! f = @(x,y,z) x.^2 - y - z.^2;
%! [xx, yy, zz] = meshgrid (x, y, z);
%! v = f (xx,yy,zz);
%! xi = yi = zi = -1:0.5:1; yi = yi + 2.1;
%! [xxi, yyi, zzi] = meshgrid (xi, yi, zi);
%! vi = interp3 (x, y, z, v, xxi, yyi, zzi);
%! [xxi, yyi, zzi] = ndgrid (yi, xi, zi);
%! vi2 = interpn (y, x, z, v, xxi, yyi, zzi);
%! assert (vi, vi2, 10*eps);
%!test # meshgridded xi, yi, zi
%! x = z = 1:2; y = 1:3;
%! v = ones ([3,2,2]); v(:,2,1) = [7;5;4]; v(:,1,2) = [2;3;5];
%! xi = zi = .6:1.6; yi = 1;
%! [xxi3, yyi3, zzi3] = meshgrid (xi, yi, zi);
%! [xxi, yyi, zzi] = ndgrid (yi, xi, zi);
%! vi = interp3 (x, y, z, v, xxi3, yyi3, zzi3, "nearest");
%! vi2 = interpn (y, x, z, v, xxi, yyi, zzi, "nearest");
%! assert (vi, vi2);
%!test # vector xi, yi, zi
%! x = z = 1:2; y = 1:3;
%! v = ones ([3,2,2]); v(:,2,1) = [7;5;4]; v(:,1,2) = [2;3;5];
%! xi = zi = .6:1.6; yi = 1;
%! vi = interp3 (x, y, z, v, xi, yi, zi, "nearest");
%! vi2 = interpn (y, x, z, v, yi, xi, zi, "nearest");
%! assert (vi, vi2);
%!test # vector xi+1 with extrap value
%! x = z = 1:2; y = 1:3;
%! v = ones ([3,2,2]); v(:,2,1) = [7;5;4]; v(:,1,2) = [2;3;5];
%! xi = zi = .6:1.6; yi = 1;
%! vi = interp3 (x, y, z, v, xi+1, yi, zi, "nearest", 3);
%! vi2 = interpn (y, x, z, v, yi, xi+1, zi, "nearest", 3);
%! assert (vi, vi2);
%!test # input value matrix--no x,y,z
%! x = z = 1:2; y = 1:3;
%! v = ones ([3,2,2]); v(:,2,1) = [7;5;4]; v(:,1,2) = [2;3;5];
%! xi = zi = .6:1.6; yi = 1;
%! vi = interp3 (v, xi, yi, zi, "nearest");
%! vi2 = interpn (v, yi, xi, zi, "nearest");
%! assert (vi, vi2);
%!test # input value matrix--no x,y,z, with extrap value
%! x = z = 1:2; y = 1:3;
%! v = ones ([3,2,2]); v(:,2,1) = [7;5;4]; v(:,1,2) = [2;3;5];
%! xi = zi = .6:1.6; yi = 1;
%! vi = interp3 (v, xi, yi, zi, "nearest", 3);
%! vi2 = interpn (v, yi, xi, zi, "nearest", 3);
%! assert (vi, vi2);
%!test # extrapolation
%! X = [0,0.5,1]; Y=X; Z=X;
%! V = zeros (3,3,3);
%! V(:,:,1) = [1 3 5; 3 5 7; 5 7 9];
%! V(:,:,2) = V(:,:,1) + 2;
%! V(:,:,3) = V(:,:,2) + 2;
%! tol = 10 * eps;
%! x = y = z = [-0.1,0,0.1];
%! assert (interp3 (X,Y,Z,V,x,y,z,"spline"), [-0.2, 1.0, 2.2], tol);
%! assert (interp3 (X,Y,Z,V,x,y,z,"linear"), [NA, 1.0, 2.2], tol);
%! assert (interp3 (X,Y,Z,V,x,y,z,"spline", 0), [0, 1.0, 2.2], tol);
%! assert (interp3 (X,Y,Z,V,x,y,z,"linear", 0), [0, 1.0, 2.2], tol);
%!shared z, zout, tol
%! z = zeros (3, 3, 3);
%! zout = zeros (5, 5, 5);
%! z(:,:,1) = [1 3 5; 3 5 7; 5 7 9];
%! z(:,:,2) = z(:,:,1) + 2;
%! z(:,:,3) = z(:,:,2) + 2;
%! for n = 1:5
%! zout(:,:,n) = [1 2 3 4 5;
%! 2 3 4 5 6;
%! 3 4 5 6 7;
%! 4 5 6 7 8;
%! 5 6 7 8 9] + (n-1);
%! endfor
%! tol = 10 * eps;
%!
%!assert (interp3 (z), zout, tol)
%!assert (interp3 (z, "linear"), zout, tol)
%!assert (interp3 (z, "spline"), zout, tol)
%!test <*57450>
%! [x, y, z] = meshgrid (1:10);
%! v = x;
%! xi = yi = zi = linspace (1, 10, 20).';
%! vi = interp3 (x, y, z, v, xi, yi, zi);
%! assert (size (vi), [20, 1]);
## Test input validation
%!error <not enough input arguments> interp3 ()
%!error <input reference arrays must be numeric> interp3 ({1})
%!error <input reference arrays must be numeric> interp3 (true)
%!error <input reference arrays must be numeric> interp3 (struct())
%!error <EXTRAPVAL must be a numeric scalar> interp3 (1,2,3,4,1,2,3,"linear", {1})
%!error <EXTRAPVAL must be a numeric scalar> interp3 (1,2,3,4,1,2,3,"linear", ones (2,2))
%!warning <ignoring unsupported '\*' flag> interp3 (rand (3,3,3), 1, "*linear");
%!error <V must be a 3-D array> interp3 (ones (2,2))
%!error <V must be a 3-D array> interp3 (ones (2,2), 1,1,1)
%!error <XI, YI, and ZI dimensions must be equal> interp3 (ones (2,2,2), 1,1, ones (2,2))
%!error <V must be a 3-D array> interp3 (1:2, 1:2, 1:2, ones (2,2), 1,1,1)
%!error <X, Y, Z, and V dimensions must be equal> interp3 (ones (1,2,2), ones (2,2,2), ones (2,2,2), ones (2,2,2), 1,1,1)
%!error <XI, YI, and ZI dimensions must be equal> interp3 (1:2, 1:2, 1:2, rand (2,2,2), 1,1, ones (2,2))
%!error <wrong number .* input arguments> interp3 (1:2, 1:2, 1:2)
|