File: interpft.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (149 lines) | stat: -rw-r--r-- 4,447 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
########################################################################
##
## Copyright (C) 2001-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{y} =} interpft (@var{x}, @var{n})
## @deftypefnx {} {@var{y} =} interpft (@var{x}, @var{n}, @var{dim})
##
## Fourier interpolation.
##
## If @var{x} is a vector then @var{x} is resampled with @var{n} points.  The
## data in @var{x} is assumed to be equispaced.  If @var{x} is a matrix or an
## N-dimensional array, the interpolation is performed on each column of
## @var{x}.
##
## If @var{dim} is specified, then interpolate along the dimension @var{dim}.
##
## @code{interpft} assumes that the interpolated function is periodic, and so
## assumptions are made about the endpoints of the interpolation.
## @seealso{interp1}
## @end deftypefn

function y = interpft (x, n, dim)

  if (nargin < 2)
    print_usage ();
  endif

  if (! (isscalar (n) && n == fix (n)))
    error ("interpft: N must be a scalar integer");
  endif

  if (nargin == 2)
    if (isrow (x))
      dim = 2;
    else
      dim = 1;
    endif
  endif

  nd = ndims (x);

  if (dim < 1 || dim > nd)
    error ("interpft: invalid dimension DIM");
  endif

  perm = [dim:nd, 1:(dim-1)];
  x = permute (x, perm);
  m = rows (x);

  inc = ceil (m/n);
  xfft = fft (x) / m;
  k = ceil (m / 2);
  sz = size (x);
  sz(1) = n * inc - m;

  idx = repmat ({':'}, nd, 1);
  idx{1} = 1:k;
  y = cat (1, xfft(idx{:}), zeros (sz));
  idx{1} = k+1:m;
  y = cat (1, y, xfft(idx{:}));

  ## When m is an even number of rows, the FFT has a single Nyquist bin.
  ## If zero-padded above, distribute the value of the Nyquist bin evenly
  ## between the new corresponding positive and negative frequency bins.
  if (sz(1) > 0 && k == m/2)
    idx{1} = n * inc - k + 1;
    tmp = y(idx{:}) / 2;
    y(idx{:}) = tmp;
    idx{1} = k + 1;
    y(idx{:}) = tmp;
  endif

  y = n * ifft (y);

  if (inc != 1)
    sz(1) = n;
    y = inc * reshape (y(1:inc:end), sz);
  endif

  y = ipermute (y, perm);

endfunction


%!demo
%! clf;
%! t = 0 : 0.3 : pi;  dt = t(2)-t(1);
%! n = length (t);  k = 100;
%! ti = t(1) + [0 : k-1]*dt*n/k;
%! y = sin (4*t + 0.3) .* cos (3*t - 0.1);
%! yp = sin (4*ti + 0.3) .* cos (3*ti - 0.1);
%! plot (ti, yp, 'g', ti, interp1 (t, y, ti, "spline"), 'b', ...
%!       ti, interpft (y, k), 'c', t, y, "r+");
%! legend ("sin (4t+0.3)cos (3t-0.1)", "spline", "interpft", "data");

%!shared n,y
%! x = [0:10]';  y = sin(x);  n = length (x);
%!testif HAVE_FFTW
%! assert (interpft (y, n), y, 20*eps);
%!testif HAVE_FFTW
%! assert (interpft (y', n), y', 20*eps);
%!testif HAVE_FFTW
%! assert (interpft ([y,y],n), [y,y], 20*eps);

## Test case with complex input
%!testif HAVE_FFTW <*39566>
%! x = (1 + j) * [1:4]';
%! y = ifft ([15 + 15*j; -6; -1.5 - 1.5*j; 0; -1.5 - 1.5*j; -6*j]);
%! assert (interpft (x, 6), y, 10*eps);

## Test for correct spectral symmetry with even/odd lengths
%!testif HAVE_FFTW
%! assert (max (abs (imag (interpft ([1:8], 20)))), 0, 20*eps);
%!testif HAVE_FFTW
%! assert (max (abs (imag (interpft ([1:8], 21)))), 0, 21*eps);
%!testif HAVE_FFTW
%! assert (max (abs (imag (interpft ([1:9], 20)))), 0, 20*eps);
%!testif HAVE_FFTW
%! assert (max (abs (imag (interpft ([1:9], 21)))), 0, 21*eps);

## Test input validation
%!error <Invalid call> interpft ()
%!error <Invalid call> interpft (1)
%!error <N must be a scalar integer> interpft (1,[2,2])
%!error <N must be a scalar integer> interpft (1,2.1)
%!error <invalid dimension DIM> interpft (1,2,0)
%!error <invalid dimension DIM> interpft (1,2,3)