1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
|
########################################################################
##
## Copyright (C) 2007-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{vi} =} interpn (@var{x1}, @var{x2}, @dots{}, @var{v}, @var{y1}, @var{y2}, @dots{})
## @deftypefnx {} {@var{vi} =} interpn (@var{v}, @var{y1}, @var{y2}, @dots{})
## @deftypefnx {} {@var{vi} =} interpn (@var{v}, @var{m})
## @deftypefnx {} {@var{vi} =} interpn (@var{v})
## @deftypefnx {} {@var{vi} =} interpn (@dots{}, @var{method})
## @deftypefnx {} {@var{vi} =} interpn (@dots{}, @var{method}, @var{extrapval})
##
## Perform @var{n}-dimensional interpolation, where @var{n} is at least two.
##
## Each element of the @var{n}-dimensional numeric array @var{v} represents a
## value at a location given by the parameters @var{x1}, @var{x2}, @dots{},
## @var{xn}. The parameters @var{x1}, @var{x2}, @dots{}, @var{xn} are either
## @var{n}-dimensional arrays of the same size as the array @var{v} in
## the @qcode{"ndgrid"} format or vectors.
##
## The parameters @var{y1}, @var{y2}, @dots{}, @var{yn} represent the points at
## which the array @var{vi} is interpolated. They can be vectors of the same
## length and orientation in which case they are interpreted as coordinates of
## scattered points. If they are vectors of differing orientation or length,
## they are used to form a grid in @qcode{"ndgrid"} format. They can also be
## @var{n}-dimensional arrays of equal size.
##
## If @var{x1}, @dots{}, @var{xn} are omitted, they are assumed to be
## @code{x1 = 1 : size (@var{v}, 1)}, etc. If @var{m} is specified, then
## the interpolation adds a point half way between each of the interpolation
## points. This process is performed @var{m} times. If only @var{v} is
## specified, then @var{m} is assumed to be @code{1}.
##
## The interpolation @var{method} is one of:
##
## @table @asis
## @item @qcode{"nearest"}
## Return the nearest neighbor.
##
## @item @qcode{"linear"} (default)
## Linear interpolation from nearest neighbors.
##
## @item @qcode{"pchip"}
## Piecewise cubic Hermite interpolating polynomial---shape-preserving
## interpolation with smooth first derivative (not implemented yet).
##
## @item @qcode{"cubic"}
## Cubic interpolation (same as @qcode{"pchip"} [not implemented yet]).
##
## @item @qcode{"spline"}
## Cubic spline interpolation---smooth first and second derivatives
## throughout the curve.
## @end table
##
## The default method is @qcode{"linear"}.
##
## @var{extrapval} is a scalar number. It replaces values beyond the endpoints
## with @var{extrapval}. Note that if @var{extrapval} is used, @var{method}
## must be specified as well. If @var{extrapval} is omitted and the
## @var{method} is @qcode{"spline"}, then the extrapolated values of the
## @qcode{"spline"} are used. Otherwise the default @var{extrapval} value for
## any other @var{method} is @code{NA}.
## @seealso{interp1, interp2, interp3, spline, ndgrid}
## @end deftypefn
function vi = interpn (varargin)
if (nargin < 1)
print_usage ();
endif
if (! isnumeric (varargin{1}))
error ("interpn: input reference arrays must be numeric");
endif
method = "linear";
extrapval = [];
nargs = nargin;
## Find and validate EXTRAPVAL and/or METHOD inputs
if (nargs > 1 && ischar (varargin{end-1}))
if (! isnumeric (varargin{end}) || ! isscalar (varargin{end}))
error ("interpn: EXTRAPVAL must be a numeric scalar");
endif
extrapval = varargin{end};
method = varargin{end-1};
nargs -= 2;
elseif (ischar (varargin{end}))
method = varargin{end};
nargs -= 1;
endif
if (method(1) == "*")
warning ("interpn: ignoring unsupported '*' flag to METHOD");
method(1) = [];
endif
method = validatestring (method,
{"nearest", "linear", "pchip", "cubic", "spline"},
"interpn");
if (nargs <= 2)
## Calling form interpn (V, ...)
v = varargin{1};
m = 1;
if (nargs == 2)
m = varargin{2};
if (! (isnumeric (m) && isscalar (m) && m == fix (m)))
print_usage ();
endif
endif
sz = size (v);
nd = ndims (v);
x = cell (1, nd);
y = cell (1, nd);
for i = 1 : nd
x{i} = 1 : sz(i);
y{i} = 1 : (1 / (2 ^ m)) : sz(i);
endfor
y{1} = y{1}.';
[y{:}] = ndgrid (y{:});
elseif (! isvector (varargin{1}) && nargs == (ndims (varargin{1}) + 1))
## Calling form interpn (V, Y1, Y2, ...)
v = varargin{1};
sz = size (v);
nd = ndims (v);
x = cell (1, nd);
y = varargin(2 : nargs);
for i = 1 : nd
x{i} = 1 : sz(i);
endfor
elseif (rem (nargs, 2) == 1
&& nargs == (2 * ndims (varargin{ceil (nargs / 2)})) + 1)
## Calling form interpn (X1, X2, ..., V, Y1, Y2, ...)
nv = ceil (nargs / 2);
v = varargin{nv};
sz = size (v);
nd = ndims (v);
x = varargin(1 : (nv - 1));
y = varargin((nv + 1) : nargs);
else
error ("interpn: wrong number or incorrectly formatted input arguments");
endif
if (any (! cellfun ("isvector", x)))
for i = 1 : nd
if (! size_equal (x{i}, v))
error ("interpn: incorrect dimensions for input X%d", i);
endif
idx(1 : nd) = {1};
idx(i) = ":";
x{i} = x{i}(idx{:})(:);
endfor
endif
all_vectors = all (cellfun ("isvector", y));
same_size = size_equal (y{:});
if (all_vectors && ! same_size)
[y{:}] = ndgrid (y{:});
endif
if (! strcmp (method, "spline") && isempty (extrapval))
if (iscomplex (v))
extrapval = NA + 1i*NA;
else
extrapval = NA;
endif
endif
if (strcmp (method, "linear"))
vi = __lin_interpn__ (x{:}, v, y{:});
vi(isna (vi)) = extrapval;
elseif (strcmp (method, "nearest"))
## FIXME: This seems overly complicated. Is there a way to simplify
## all the code after the call to lookup (which should be fast)?
## Could Qhull be used for quick nearest neighbor calculation?
yshape = size (y{1});
yidx = cell (1, nd);
## Find rough nearest index using lookup function [O(log2 (N)].
for i = 1 : nd
y{i} = y{i}(:);
yidx{i} = lookup (x{i}, y{i}, "lr");
endfor
## Single comparison to next largest index to see which is closer.
idx = cell (1,nd);
for i = 1 : nd
idx{i} = yidx{i} ...
+ (y{i} - x{i}(yidx{i})(:) >= x{i}(yidx{i} + 1)(:) - y{i});
endfor
vi = v(sub2ind (sz, idx{:}));
## Apply EXTRAPVAL to points outside original volume.
idx = false (prod (yshape), 1);
for i = 1 : nd
idx |= y{i} < min (x{i}(:)) | y{i} > max (x{i}(:));
endfor
vi(idx) = extrapval;
vi = reshape (vi, yshape);
elseif (strcmp (method, "spline"))
if (any (! cellfun ("isvector", y)))
ysz = size (y{1});
for i = 1 : nd
if (any (size (y{i}) != ysz))
error ("interpn: incorrect dimensions for input Y%d", i);
endif
idx(1 : nd) = {1};
idx(i) = ":";
y{i} = y{i}(idx{:});
endfor
endif
vi = __splinen__ (x, v, y, extrapval, "interpn");
if (size_equal (y{:}))
ly = length (y{1});
idx = cell (1, ly);
q = cell (1, nd);
for i = 1 : ly
q(:) = i;
idx{i} = q;
endfor
vi = vi(cellfun (@(x) sub2ind (size (vi), x{:}), idx));
vi = reshape (vi, size (y{1}));
endif
elseif (strcmp (method, "pchip"))
error ("interpn: pchip interpolation not yet implemented");
elseif (strcmp (method, "cubic"))
error ("interpn: cubic interpolation not yet implemented");
endif
endfunction
%!demo
%! clf;
%! colormap ("default");
%! A = [13,-1,12;5,4,3;1,6,2];
%! x = [0,1,4]; y = [10,11,12];
%! xi = linspace (min (x), max (x), 17);
%! yi = linspace (min (y), max (y), 26)';
%! mesh (xi, yi, interpn (x,y,A.',xi,yi, "linear").');
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x(:),y(:),A(:),"b*"); hold off;
%!demo
%! clf;
%! colormap ("default");
%! A = [13,-1,12;5,4,3;1,6,2];
%! x = [0,1,4]; y = [10,11,12];
%! xi = linspace (min (x), max (x), 17);
%! yi = linspace (min (y), max (y), 26)';
%! mesh (xi, yi, interpn (x,y,A.',xi,yi, "nearest").');
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x(:),y(:),A(:),"b*"); hold off;
%!#demo # FIXME: Uncomment when support for "cubic" has been added
%! clf;
%! colormap ("default");
%! A = [13,-1,12;5,4,3;1,6,2];
%! x = [0,1,2]; y = [10,11,12];
%! xi = linspace (min (x), max (x), 17);
%! yi = linspace (min (y), max (y), 26)';
%! mesh (xi, yi, interpn (x,y,A.',xi,yi, "cubic").');
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x(:),y(:),A(:),"b*"); hold off;
%!demo
%! clf;
%! colormap ("default");
%! A = [13,-1,12;5,4,3;1,6,2];
%! x = [0,1,2]; y = [10,11,12];
%! xi = linspace (min (x), max (x), 17);
%! yi = linspace (min (y), max (y), 26)';
%! mesh (xi, yi, interpn (x,y,A.',xi,yi, "spline").');
%! [x,y] = meshgrid (x,y);
%! hold on; plot3 (x(:),y(:),A(:),"b*"); hold off;
%!demo
%! clf;
%! colormap ("default");
%! x = y = z = -1:1;
%! f = @(x,y,z) x.^2 - y - z.^2;
%! [xx, yy, zz] = meshgrid (x, y, z);
%! v = f (xx,yy,zz);
%! xi = yi = zi = -1:0.1:1;
%! [xxi, yyi, zzi] = ndgrid (xi, yi, zi);
%! vi = interpn (x, y, z, v, xxi, yyi, zzi, "spline");
%! mesh (yi, zi, squeeze (vi(1,:,:)));
%!test
%! [x,y,z] = ndgrid (0:2);
%! f = x + y + z;
%! assert (interpn (x,y,z,f,[.5 1.5],[.5 1.5],[.5 1.5]), [1.5, 4.5]);
%! assert (interpn (x,y,z,f,[.51 1.51],[.51 1.51],[.51 1.51],"nearest"),
%! [3, 6]);
%! assert (interpn (x,y,z,f,[.5 1.5],[.5 1.5],[.5 1.5],"spline"), [1.5, 4.5]);
%! assert (interpn (x,y,z,f,x,y,z), f);
%! assert (interpn (x,y,z,f,x,y,z,"nearest"), f);
%! assert (interpn (x,y,z,f,x,y,z,"spline"), f);
%!test
%! [x, y, z] = ndgrid (0:2, 1:4, 2:6);
%! f = x + y + z;
%! xi = [0.5 1.0 1.5]; yi = [1.5 2.0 2.5 3.5]; zi = [2.5 3.5 4.0 5.0 5.5];
%! fi = interpn (x, y, z, f, xi, yi, zi);
%! [xi, yi, zi] = ndgrid (xi, yi, zi);
%! assert (fi, xi + yi + zi);
%!test
%! xi = 0:2; yi = 1:4; zi = 2:6;
%! [x, y, z] = ndgrid (xi, yi, zi);
%! f = x + y + z;
%! fi = interpn (x, y, z, f, xi, yi, zi, "nearest");
%! assert (fi, x + y + z);
%!test
%! [x,y,z] = ndgrid (0:2);
%! f = x.^2 + y.^2 + z.^2;
%! assert (interpn (x,y,-z,f,1.5,1.5,-1.5), 7.5);
%!test # for Matlab-compatible rounding for "nearest"
%! x = meshgrid (1:4);
%! assert (interpn (x, 2.5, 2.5, "nearest"), 3);
%!test
%! z = zeros (3, 3, 3);
%! zout = zeros (5, 5, 5);
%! z(:,:,1) = [1 3 5; 3 5 7; 5 7 9];
%! z(:,:,2) = z(:,:,1) + 2;
%! z(:,:,3) = z(:,:,2) + 2;
%! for n = 1:5
%! zout(:,:,n) = [1 2 3 4 5;
%! 2 3 4 5 6;
%! 3 4 5 6 7;
%! 4 5 6 7 8;
%! 5 6 7 8 9] + (n-1);
%! endfor
%! tol = 10*eps;
%! assert (interpn (z), zout, tol);
%! assert (interpn (z, "linear"), zout, tol);
%! assert (interpn (z, "spline"), zout, tol);
## Test that interpolating a complex matrix is equivalent to interpolating its
## real and imaginary parts separately.
%!test <*61907>
%! yi = [0.5, 1.5]';
%! xi = [2.5, 3.5];
%! zi = [2.25, 4.75];
%! rand ("state", 1340640850);
%! v = rand (4, 3, 5) + 1i * rand (4, 3, 5);
%! for method = {"nearest", "linear", "spline"}
%! vi_complex = interpn (v, yi, xi, zi, method{1});
%! vi_real = interpn (real (v), yi, xi, zi, method{1});
%! vi_imag = interpn (imag (v), yi, xi, zi, method{1});
%! assert (real (vi_complex), vi_real, 2*eps);
%! assert (imag (vi_complex), vi_imag, 2*eps);
%! endfor
## Test input validation
%!error <Invalid call> interpn ()
%!error <input reference arrays must be numeric> interpn ("foobar")
%!error <input reference arrays must be numeric> interpn ({1})
%!error <input reference arrays must be numeric> interpn (true)
%!error <EXTRAPVAL must be a numeric scalar> interpn (1, "linear", {1})
%!error <EXTRAPVAL must be a numeric scalar> interpn (1, "linear", [1, 2])
%!warning <ignoring unsupported '\*' flag> interpn (rand (3,3), 1, "*linear");
%!error <'foobar' does not match any of> interpn (1, "foobar")
%!error <wrong number or incorrectly formatted input arguments>
%! interpn (1, 2, 3, 4);
%!error <incorrect dimensions for input X1>
%! interpn ([1,2], ones (2,2), magic (3), [1,2], [1,2])
%!error <incorrect dimensions for input X2>
%! interpn (ones (3,3), ones (2,2), magic (3), [1,2], [1,2])
%!error <incorrect dimensions for input Y2>
%! interpn ([1,2], [1,2], magic (3), [1,2], ones (2,2), "spline")
%!error <pchip interpolation not yet implemented> interpn ([1,2], "pchip")
%!error <cubic interpolation not yet implemented> interpn ([1,2], "cubic")
|