1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
########################################################################
##
## Copyright (C) 1993-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{str} =} num2str (@var{x})
## @deftypefnx {} {@var{str} =} num2str (@var{x}, @var{precision})
## @deftypefnx {} {@var{str} =} num2str (@var{x}, @var{format})
## Convert a number (or array) to a string (or a character array).
##
## The optional second argument may either give the number of significant
## digits (@var{precision}) to be used in the output or a format template
## string (@var{format}) as in @code{sprintf} (@pxref{Formatted Output}).
## @code{num2str} can also process complex numbers.
##
## Examples:
##
## @example
## num2str (123.456)
## @result{} 123.456
##
## num2str (123.456, 4)
## @result{} 123.5
##
## s = num2str ([1, 1.34; 3, 3.56], "%5.1f")
## @result{} s =
## 1.0 1.3
## 3.0 3.6
## whos s
## @result{} Variables in the current scope:
## Attr Name Size Bytes Class
## ==== ==== ==== ===== =====
## s 2x8 16 char
## Total is 16 elements using 16 bytes
##
## num2str (1.234 + 27.3i)
## @result{} 1.234+27.3i
## @end example
##
## The @code{num2str} function is not very flexible. For better control
## over the results, use @code{sprintf} (@pxref{Formatted Output}).
##
## Programming Notes:
##
## For @sc{matlab} compatibility, leading spaces are stripped before returning
## the string.
##
## Integers larger than @code{flintmax} may not be displayed correctly.
##
## For complex @var{x}, the format string may only contain one output
## conversion specification and nothing else. Otherwise, results will be
## unpredictable.
##
## Any optional @var{format} specified by the programmer is used without
## modification. This is in contrast to @sc{matlab} which tampers with the
## @var{format} based on internal heuristics.
## @seealso{sprintf, int2str, mat2str}
## @end deftypefn
function str = num2str (x, arg)
if (nargin < 1)
print_usage ();
elseif (! (isnumeric (x) || islogical (x) || ischar (x)))
error ("num2str: X must be a numeric, logical, or character array");
endif
if (ischar (x))
str = x;
elseif (isempty (x))
str = "";
elseif (isreal (x))
if (nargin == 2)
if (ischar (arg))
fmt = arg;
elseif (isnumeric (arg) && isscalar (arg) && arg >= 0 && arg == fix (arg))
if (isfloat (x))
fmt = sprintf ("%%%d.%dg", arg+7, arg);
else
fmt = sprintf ("%%%dd", arg);
endif
else
error ("num2str: PRECISION must be a scalar integer >= 0");
endif
else
if (isnumeric (x))
## Set up a suitable format string while ignoring Inf/NaN entries
valid = isfinite (x(:));
ndgt = floor (log10 (max (abs (x(valid)))));
if (isempty (ndgt) || ndgt == -Inf)
ndgt = 0; # All Inf or all zero array
endif
if (ndgt > 15 || any (x(valid) != fix (x(valid))))
## Floating point input
ndgt = max (ndgt + 5, 5); # Keep at least 5 significant digits
ndgt = min (ndgt, 16); # Cap significant digits at 16
fmt = sprintf ("%%%d.%dg", ndgt+7, ndgt);
else
## Integer input
ndgt += 3;
if (any (! valid))
ndgt = max (ndgt, 5); # Allow space for Inf/NaN
endif
if (isfloat (x))
fmt = sprintf ("%%%d.0f", ndgt);
else
fmt = sprintf ("%%%dd", ndgt);
endif
endif
else
## Logical input
fmt = "%3d";
endif
endif
fmt = do_string_escapes (fmt); # required now that '\n' is interpreted.
nd = ndims (x);
nc = columns (x) * (nd - 1); # ND-arrays are expanded in columns
x = permute (x, [2, 3:nd, 1]);
if (! (sum (strrep (fmt, "%%", "") == "%") > 1
|| any (strcmp (fmt, {"%s", "%c"}))))
fmt = [deblank(repmat (fmt, 1, nc)), "\n"];
endif
strtmp = sprintf (fmt, x);
str = strtrim (char (ostrsplit (strtmp, "\n", true)));
else # Complex matrix input
if (nargin == 2)
if (ischar (arg))
fmt = [deblank(arg) "%-+" arg(2:end) "i"];
elseif (isnumeric (arg) && isscalar (arg) && arg >= 0 && arg == fix (arg))
fmt = sprintf ("%%%d.%dg%%-+%d.%dgi", arg+7, arg, arg+7, arg);
else
error ("num2str: PRECISION must be a scalar integer >= 0");
endif
else
## Set up a suitable format string while ignoring Inf/NaN entries
valid_real = isfinite (real (x(:)));
valid_imag = isfinite (imag (x(:)));
ndgt = floor (log10 (max (max (abs (real (x(valid_real)))),
max (abs (imag (x(valid_imag)))))));
if (isempty (ndgt) || ndgt == -Inf)
ndgt = 0; # All Inf or all zero array
endif
if (any (x(valid_real & valid_imag) != fix (x(valid_real & valid_imag))))
## Floating point input
ndgt = max (ndgt + 5, 5); # Keep at least 5 significant digits
ndgt = min (ndgt, 16); # Cap significant digits at 16
fmt = sprintf ("%%%d.%dg%%-+%d.%dgi", ndgt+7, ndgt, ndgt+7, ndgt);
else
## Integer input
ndgt += 3;
## FIXME: Integers must be masked to show only 16 significant digits
## See test case for bug #36133 below
fmt = sprintf ("%%%d.0f%%-+%d.0fi", ndgt, ndgt);
endif
endif
## Manipulate the complex value to have real values in the odd
## columns and imaginary values in the even columns.
nd = ndims (x);
nc = columns (x);
idx = repmat ({':'}, nd, 1);
perm(1:2:2*nc) = 1:nc;
perm(2:2:2*nc) = nc + (1:nc);
idx{2} = perm;
x = horzcat (real (x), imag (x));
x = x(idx{:});
fmt = [deblank(repmat(fmt, 1, nc * (nd - 1))), "\n"];
tmp = sprintf (fmt, permute (x, [2, 3:nd, 1]));
## Put the "i"'s where they are supposed to be.
tmp = regexprep (tmp, " +i\n", "i\n");
tmp = regexprep (tmp, "( +)i", "i$1");
str = strtrim (char (ostrsplit (tmp(1:end-1), "\n")));
endif
endfunction
## Basic tests
%!assert (num2str (123), "123")
%!assert (num2str (1.23), "1.23")
%!assert (num2str (123.456, 4), "123.5")
%!assert (num2str ([1, 1.34; 3, 3.56], "%5.1f"), ["1.0 1.3"; "3.0 3.6"])
%!assert (num2str (1.234 + 27.3i), "1.234+27.3i")
%!assert (num2str ([true false true]), "1 0 1")
## Exceptional values
%!assert (num2str (19440606), "19440606")
%!assert (num2str (2^33), "8589934592")
%!assert (num2str (-2^33), "-8589934592")
%!assert (num2str (2^33+1i), "8589934592+1i")
%!assert (num2str (-2^33+1i), "-8589934592+1i")
%!assert (num2str ([0 0 0]), "0 0 0")
%!assert (num2str (inf), "Inf")
%!assert (num2str ([inf -inf]), "Inf -Inf")
%!assert (num2str ([inf NaN -inf]), "Inf NaN -Inf")
%!assert (num2str ([complex(Inf,0), complex(0,-Inf)]), "Inf+0i 0-Infi")
%!assert (num2str (complex (Inf,1)), "Inf+1i")
%!assert (num2str (complex (1,Inf)), "1+Infi")
%!assert (num2str (nan), "NaN")
%!assert (num2str (complex (NaN, 1)), "NaN+1i")
%!assert (num2str (complex (1, NaN)), "1+NaNi")
%!assert (num2str (NA), "NA")
%!assert (num2str (complex (NA, 1)), "NA+1i")
%!assert (num2str (complex (1, NA)), "1+NAi")
%!assert (num2str (int64 (-flintmax ()) - 1), "-9007199254740993")
%!assert (num2str (int64 (-flintmax ()) - 1, 18), "-9007199254740993")
## ND-arrays are concatenated in columns
%!shared m, x
%! m = magic (3);
%! x = cat (3, m, -m);
## real case
%!test <*46770>
%! y = num2str (x);
%! assert (rows (y) == 3);
%! assert (y, ["8 1 6 -8 -1 -6"
%! "3 5 7 -3 -5 -7"
%! "4 9 2 -4 -9 -2"]);
## complex case
%!test <*46770>
%! x(1,1,2) = -8+2i;
%! y = num2str (x);
%! assert (rows (y) == 3);
%! assert (y, ["8+0i 1+0i 6+0i -8+2i -1+0i -6+0i"
%! "3+0i 5+0i 7+0i -3+0i -5+0i -7+0i"
%! "4+0i 9+0i 2+0i -4+0i -9+0i -2+0i"]);
## Clear shared variables
%!shared
## Integers greater than 1e15 should switch to exponential notation
%!assert <*36133> (num2str (1e15), "1000000000000000")
%!assert <*36133> (num2str (1e16), "1e+16")
## Even exact integers in IEEE notation should use exponential notation
%!assert <*36133> (num2str (2^512), "1.34078079299426e+154")
## Mixed integer/floating point arrays
%!assert <*36133> (num2str ([2.1, 1e23, pi]),
%! "2.1 9.999999999999999e+22 3.141592653589793")
## Large integers should not switch sign when printed due to overflow
%!assert <*36121> (num2str (2.4e9, 15), "2400000000")
## Test for extra rows generated from newlines in format
%!assert <*44864> (rows (num2str (magic (3), "%3d %3d %3d\n")), 3)
## Test that string conversion of numeric objects results in characters
## if the numbers are within range for ASCII.
%!assert <*45174> (num2str ([65 66 67], "%s"), "ABC")
## Test input validation
%!error <Invalid call> num2str ()
%!error <X must be a numeric> num2str ({1})
%!error <PRECISION must be a scalar integer .= 0> num2str (1, {1})
%!error <PRECISION must be a scalar integer .= 0> num2str (1, ones (2))
%!error <PRECISION must be a scalar integer .= 0> num2str (1, -1)
%!error <PRECISION must be a scalar integer .= 0> num2str (1, 1.5)
%!error <PRECISION must be a scalar integer .= 0> num2str (1+1i, {1})
%!error <PRECISION must be a scalar integer .= 0> num2str (1+1i, ones (2))
%!error <PRECISION must be a scalar integer .= 0> num2str (1+1i, -1)
%!error <PRECISION must be a scalar integer .= 0> num2str (1+1i, 1.5)
|