File: quad2d.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (523 lines) | stat: -rw-r--r-- 20,644 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
########################################################################
##
## Copyright (C) 2017-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{q} =} quad2d (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb})
## @deftypefnx {} {@var{q} =} quad2d (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb}, @var{prop}, @var{val}, @dots{})
## @deftypefnx {} {[@var{q}, @var{err}, @var{iter}] =} quad2d (@dots{})
##
## Numerically evaluate the two-dimensional integral of @var{f} using adaptive
## quadrature over the two-dimensional domain defined by @var{xa}, @var{xb},
## @var{ya}, @var{yb} using tiled integration.  Additionally, @var{ya} and
## @var{yb} may be scalar functions of @var{x}, allowing for the integration
## over non-rectangular domains.
##
## @var{f} is a function handle, inline function, or string containing the
## name of the function to evaluate.  The function @var{f} must be of the form
## @math{z = f(x,y)}, and all operations must be vectorized such that @var{x}
## and @var{y} accept array inputs and return array outputs of the same size.
## (It can be assumed that @var{x} and @var{y} will either be same-size arrays
## or one will be a scalar.)  The underlying integrators will input arrays of
## integration points into @var{f} and/or use internal vector expansions to
## speed computation that can produce unpredictable results if @var{f} is not
## restricted to elementwise operations.  For integrands where this is
## unavoidable, the @qcode("Vectorized") option described below may produce
## more reliable results.
##
## Additional optional parameters can be specified using
## @qcode{"@var{property}", @var{value}} pairs.  Valid properties are:
##
## @table @code
## @item AbsTol
## Define the absolute error tolerance for the quadrature.  The default
## value is 1e-10 (1e-5 for single).
##
## @item RelTol
## Define the relative error tolerance for the quadrature.  The default
## value is 1e-6 (1e-4 for single).
##
## @item MaxFunEvals
## The maximum number of function calls to the vectorized function @var{f}.
## The default value is 5000.
##
## @item Singular
## Enable/disable transforms to weaken singularities on the edge of the
## integration domain.  The default value is @var{true}.
##
## @item Vectorized
## Enable or disable vectorized integration.  A value of @code{false} forces
## Octave to use only scalar inputs when calling the integrand, which enables
## integrands @math{f(x,y)} that have not been vectorized or only accept
## scalar values of @var{x} or @var{y}.  The default value is @code{true}.
## Note that this is achieved by wrapping @math{f(x,y)} with the function
## @code{arrayfun}, which may significantly decrease computation speed.
##
## @item FailurePlot
## If @code{quad2d} fails to converge to the desired error tolerance before
## MaxFunEvals is reached, a plot of the areas that still need refinement
## is created.  The default value is @var{false}.
## @end table
##
## Adaptive quadrature is used to minimize the estimate of error until the
## following is satisfied:
## @tex
## $$error \leq \max \left( AbsTol, RelTol\cdot\vert q\vert \right)$$
## @end tex
## @ifnottex
##
## @example
## @group
##         @var{error} <= max (@var{AbsTol}, @var{RelTol}*|@var{q}|)
## @end group
## @end example
##
## @end ifnottex
##
## The optional output @var{err} is an approximate bound on the error in the
## integral @code{abs (@var{q} - @var{I})}, where @var{I} is the exact value
## of the integral.  The optional output @var{iter} is the number of vectorized
## function calls to the function @var{f} that were used.
##
## Example 1 : integrate a rectangular region in x-y plane
##
## @example
## @group
## @var{f} = @@(@var{x},@var{y}) 2*ones (size (@var{x}));
## @var{q} = quad2d (@var{f}, 0, 1, 0, 1)
##   @result{} @var{q} =  2
## @end group
## @end example
##
## The result is a volume, which for this constant-value integrand, is just
## @code{@var{Length} * @var{Width} * @var{Height}}.
##
## Example 2 : integrate a triangular region in x-y plane
##
## @example
## @group
## @var{f} = @@(@var{x},@var{y}) 2*ones (size (@var{x}));
## @var{ymax} = @@(@var{x}) 1 - @var{x};
## @var{q} = quad2d (@var{f}, 0, 1, 0, @var{ymax})
##   @result{} @var{q} =  1
## @end group
## @end example
##
## The result is a volume, which for this constant-value integrand
## @w{@math{@var{f} = 2}}, is the Triangle Area x Height or
## @w{@code{1/2 * @var{Base} * @var{Width} * @var{Height}}}.
##
## Example 3 : integrate a non-vectorized function over a square region
##
## @example
## @group
## @var{f} = @@(@var{x},@var{y}) sinc (@var{x}) * sinc (@var{y}));
## @var{q} = quad2d (@var{f}, -1, 1, -1, 1)
##   @result{} @var{q} =  12.328  (incorrect)
## @var{q} = quad2d (@var{f}, -1, 1, -1, 1, "Vectorized", false)
##   @result{} @var{q} =  1.390 (correct)
## @var{f} = @@(@var{x},@var{y}) sinc (@var{x}) .* sinc (@var{y});
## @var{q} = quad2d (@var{f}, -1, 1, -1, 1)
##   @result{} @var{q} =  1.390  (correct)
## @end group
## @end example
##
## The first result is incorrect as the non-elementwise operator between the
## sinc functions in @var{f} create unintended matrix multiplications between
## the internal integration arrays used by @code{quad2d}.  In the second
## result, setting @qcode{"Vectorized"} to false forces @code{quad2d} to
## perform scalar internal operations to compute the integral, resulting in
## the correct numerical result at the cost of about a 20x increase in
## computation time. In the third result, vectorizing the integrand @var{f}
## using the elementwise multiplication operator gets the correct result
## without increasing computation time.
##
## Programming Notes: If there are singularities within the integration region
## it is best to split the integral and place the singularities on the
## boundary.
##
## Known @sc{matlab} incompatibility: If tolerances are left unspecified, and
## any integration limits are of type @code{single}, then Octave's integral
## functions automatically reduce the default absolute and relative error
## tolerances as specified above.  If tighter tolerances are desired they
## must be specified.  @sc{matlab} leaves the tighter tolerances appropriate
## for @code{double} inputs in place regardless of the class of the
## integration limits.
##
## Reference: @nospell{L.F. Shampine},
## @cite{@sc{matlab} program for quadrature in 2D}, Applied Mathematics and
## Computation, pp.@: 266--274, Vol 1, 2008.
##
## @seealso{integral2, dblquad, integral, quad, quadgk, quadv, quadl, quadcc,
##          trapz, integral3, triplequad}
## @end deftypefn

function [q, err, iter] = quad2d (f, xa, xb, ya, yb, varargin)

  if (nargin < 5 || mod (nargin, 2) == 0)
    print_usage ();
  endif

  if (ischar (f))
    ## Convert function given as a string to a function handle
    f = @(x) feval (f, x);
  elseif (! is_function_handle (f))
    print_usage ();
  endif

  if (! (isreal (xa) && isscalar (xa) && isreal (xb) && isscalar (xb)))
    print_usage ();
  endif

  ## Check for single or double limits to set appropriate default tolerance.
  issingle = (isa ([xa, xb], "single")
              || (! is_function_handle (ya) && isa (ya, "single"))
              || (! is_function_handle (yb) && isa (yb, "single")));

  ## Set defaults, update with any specified parameters.
  if (issingle)
    abstol = 1e-5;
    reltol = 1e-4;
  else
    abstol = 1e-10;
    reltol = 1e-6;
  endif

  vectorized = true;
  singular = true;
  idx = 1;
  maxiter = 5000;
  failureplot = false;

  while (idx < nargin - 5)
    prop = varargin{idx++};
    if (! ischar (prop))
      error ("quad2d: property PROP must be a string");
    endif

    switch (lower (prop))
      case "abstol"
        abstol = varargin{idx++};
        if (! (isnumeric (abstol) && isscalar (abstol) && abstol >= 0))
          error ("quad2d: AbsTol value must be a numeric scalar >= 0");
        endif

      case "reltol"
        reltol = varargin{idx++};
        if (! (isnumeric (reltol) && isscalar (reltol) && reltol >= 0))
          error ("quad2d: RelTol value must be a numeric scalar >= 0");
        endif

      case "maxfunevals"
        maxiter = varargin{idx++};
        if (! (isnumeric (maxiter) && isscalar (maxiter)
               && fix (maxiter) == maxiter && maxiter >= 1))
          error ("quad2d: MaxFunEvals value must be a scalar integer >= 1");
        endif

      case "singular"
        singular = varargin{idx++};
        if (! (isscalar (singular) && isreal (singular)))
          error ("quad2d: Singular must be a logical value");
        endif

      case "vectorized"
        vectorized = varargin{idx++};
        if (! (isscalar (vectorized) && isreal (vectorized)))
          error ("quad2d: Vectorized must be a logical value");
        endif

      case "failureplot"
        failureplot = varargin{idx++};
        if (! (isscalar (failureplot) && isreal (failureplot)))
          error ("quad2d: FailurePlot must be a logical value");
        endif

      otherwise
        error ("quad2d: unknown property '%s'", prop);

    endswitch
  endwhile

  if (! vectorized)
    f = @(x, y) arrayfun (f, x, y);
  endif

  ## check upper and lower bounds of y
  if (! is_function_handle (ya))
    if (! (isreal (ya) && isscalar (ya)))
      error ("quad2d: YA must be a real scalar or a function");
    endif
    ya = @(x) ya * ones (rows (x), columns (x));
  endif
  if (! is_function_handle (yb))
    if (! (isreal (yb) && isscalar (yb)))
      error ("quad2d: YB must be a real scalar or a function");
    endif
    yb = @(x) yb * ones (rows (x), columns (x));
  endif

  iter = 0;
  qaccept = 0;
  qerraccept = 0;

  if (singular)
    ## Shampine suggests using the singularity weakening transform
    ## suggested by Havie.
    ##   \int_a^b f(x) dx = \int_0^pi f (g(t)) (dx / dt) dt
    ## where
    ##   g(t) = ((a - b) * cos(t) + (a + b)) / 2
    ##   dx = - (a - b) * sin(t) / 2 dt
    ## Now our integral is
    ##   \int_a^b \int_0^1 f(x,y) dydx
    ## as we already substitute for "y", so
    ##   gx(tx) = ((a - b) * cos(tx) + (a + b)) / 2
    ##   gy(ty) = (1 - cos(ty)) / 2
    ##   dydx = (b - a) * sin(tx) * sin(ty) / 4 dtydtx

    xtrans = @(tx) ((xa - xb) .* cos (tx) + (xa + xb)) ./ 2;
    ytrans = @(ty) (1 - cos (ty)) ./ 2;
    ztrans = @(tx, ty) (xb - xa) .* sin (tx) .* sin (ty) ./ 4;
    area = pi ^ 2;

    ## Initialize tile list
    tilelist(1) = struct ("xa", 0, "xb", pi, "ya", 0, "yb", pi, ...
                          "q", 0, "qerr", Inf);
  else
    xtrans = @(tx) tx;
    ytrans = @(ty) ty;
    ztrans = @(tx, ty)  1;
    area = (xb - xa);

    ## Initialize tile list
    tilelist(1) = struct ("xa", xa, "xb", xb, "ya", 0, "yb", 1, ...
                          "q", 0, "qerr", Inf);
  endif

  while (length (tilelist) > 0 && iter < maxiter)
    ## Get tile with the largest error
    [~, idx] = max ([tilelist.qerr]);
    tile = tilelist(idx);
    tilelist(idx) = [];

    ## Subdivide the tile into 4 subtiles
    iter += 4;
    tiles(4) = struct ("xa", tile.xa, "xb", tile.xa + (tile.xb - tile.xa) / 2,
                       "ya", tile.ya, "yb", tile.ya + (tile.yb - tile.ya) / 2,
                       "q", 0, "qerr", 0);
    tiles(3) = struct ("xa", tile.xa, "xb", tile.xa + (tile.xb - tile.xa) / 2,
                       "ya", tile.ya + (tile.yb - tile.ya) / 2, "yb", tile.yb,
                       "q", 0, "qerr", 0);
    tiles(2) = struct ("xa", tile.xa + (tile.xb - tile.xa) / 2, "xb", tile.xb,
                       "ya", tile.ya, "yb", tile.ya + (tile.yb - tile.ya) / 2,
                       "q", 0, "qerr", 0);
    tiles(1) = struct ("xa", tile.xa + (tile.xb - tile.xa) / 2, "xb", tile.xb,
                       "ya", tile.ya + (tile.yb - tile.ya) / 2, "yb", tile.yb,
                       "q", 0, "qerr", 0);

    ## Perform the quadrature of 4 subtiles
    for i = 1:4
      [tiles(i).q, tiles(i).qerr] = ...
        tensorproduct (f, ya, yb, tiles(i), xtrans, ytrans, ztrans, singular);
    endfor

    q = qaccept + sum ([[tilelist.q], tiles.q]);
    err = qerraccept + sum ([[tilelist.qerr], tiles.qerr]);
    tol = max (abstol, reltol .* abs (q));

    ## Shampine suggests taking a margin of a factor of 8 for
    ## the local tolerance.  That, and the fact that we are subdividing
    ## into 4 tiles, means we divide by 32 at this point.
    localtol = tol * ([tile.xb] - [tile.xa]) * ([tile.yb] - [tile.ya]) ...
               / area / 32;

    ## If global tolerance is met, return.
    if (err < tol)
      break;
    endif

    ## Accept the tiles meeting the tolerance, and add the others back to
    ## the list of tiles to treat.
    idx = find ([tiles.qerr] < localtol);
    qaccept += sum ([tiles(idx).q]);
    qerraccept += sum ([tiles(idx).qerr]);
    tiles(idx) = [];
    tilelist = [tilelist, tiles];
  endwhile

  ## Verify convergence
  if (iter >= maxiter)
    if (err > max (abstol, reltol .* abs (q)))
      warning (["quad2d: " ...
                "Maximum number of sub-tiles reached without convergence"]);
    else
      warning (["quad2d: " ...
                "Maximum number of sub-tiles reached, accuracy may be low"]);
    endif
    if (failureplot)
      newplot ();
      title ("quad2d : Areas needing refinement");
      for tile = tilelist
        xaa = xtrans(tile.xa);
        xbb = xtrans(tile.xb);
        y1 = ya(xaa) + ytrans(tile.ya) * (yb(xaa) - ya(xaa));
        y2 = ya(xaa) + ytrans(tile.yb) * (yb(xaa) - ya(xaa));
        y3 = ya(xbb) + ytrans(tile.yb) * (yb(xbb) - ya(xbb));
        y4 = ya(xbb) + ytrans(tile.ya) * (yb(xbb) - ya(xbb));
        patch ([xaa, xaa, xbb, xbb, xaa], [y1, y2, y3, y4, y1], "b");
      endfor
    endif
  endif

endfunction

function [q, qerr] = tensorproduct (f, ya, yb, tile, xtrans, ytrans, ztrans, singular)

  ## The Shampine TwoD paper proposes using a G3,K7 rule in a tensor product.
  ## I couldn't find a tabulated abscissas and weights of a G3,K7 rule publicly
  ## available, so use a G7,K15 rule from Octave's implementation of quadgk.

  persistent abscissa = [-0.9914553711208126e+00, -0.9491079123427585e+00, ...
                         -0.8648644233597691e+00, -0.7415311855993944e+00, ...
                         -0.5860872354676911e+00, -0.4058451513773972e+00, ...
                         -0.2077849550078985e+00,  0.0000000000000000e+00, ...
                          0.2077849550078985e+00,  0.4058451513773972e+00, ...
                          0.5860872354676911e+00,  0.7415311855993944e+00, ...
                          0.8648644233597691e+00,  0.9491079123427585e+00, ...
                          0.9914553711208126e+00];

  persistent weights15 = [0.2293532201052922e-01,  0.6309209262997855e-01, ...
                          0.1047900103222502e+00,  0.1406532597155259e+00, ...
                          0.1690047266392679e+00,  0.1903505780647854e+00, ...
                          0.2044329400752989e+00,  0.2094821410847278e+00, ...
                          0.2044329400752989e+00,  0.1903505780647854e+00, ...
                          0.1690047266392679e+00,  0.1406532597155259e+00, ...
                          0.1047900103222502e+00,  0.6309209262997855e-01, ...
                          0.2293532201052922e-01];

  persistent weights7  = [0.0, ...
                          0.1294849661688697e+00, 0.0, ...
                          0.2797053914892767e+00, 0.0, ...
                          0.3818300505051889e+00, 0.0, ...
                          0.4179591836734694e+00, 0.0, ...
                          0.3818300505051889e+00, 0.0, ...
                          0.2797053914892767e+00, 0.0, ...
                          0.1294849661688697e+00, 0.0];

  xaa = tile.xa;
  xbb = tile.xb;
  yaa = tile.ya;
  ybb = tile.yb;

  tx = ((xbb - xaa) * abscissa + xaa + xbb) / 2;
  x = xtrans(tx);
  ty = (abscissa' * (ybb - yaa)  + yaa + ybb) / 2;
  y = ones (15, 1) * ya(x) + ytrans(ty) * (yb(x) - ya(x));

  xhalfwidth = (xbb - xaa ) / 2;
  yhalfwidth = ones (15, 1) * (yb(x) - ya(x)) .* (ybb - yaa) ./ 2;

  x = ones (15, 1) * x;
  tx = ones (15,1) * tx;
  ty = ty * ones (1, 15);

  z = yhalfwidth .* f (x, y) .* ztrans(tx, ty) .* xhalfwidth;
  q = weights15 * (weights15 * z).';
  qerr = abs (weights7 * (weights7 * z).' - q);

endfunction


%!shared f
%! f = @(x, y) x .* y;
%!assert (quad2d (f, 0, 1, 0, 1), 0.25, 1e-10)

%!test
%! f = @(x, y) 9 * x.^2 + 15 * y.^2;
%!assert (quad2d (f, 0, 5, -5, 0, "AbsTol", 1e-9), 5000, 1e-9)
%!assert (quad2d (f, 0, 5, -5, 0, "RelTol", 1e-6), 5000, -1e-6)
%!assert (quad2d (f, 0, 5, -5, 0, "RelTol", 1e-6, "AbsTol", 1e-9), 5000, 1e-9)

## tests from dblquad
%!test
%! f = @(x, y) 1 ./ (x+y);
%!assert (quad2d (f, 0, 1, 0, 1, "AbsTol", 1e-7), 2*log (2), 1e-7)
%!assert (quad2d (f, 0, 1, 0, 1, "RelTol", 1e-5), 2*log (2), -1e-5)
%!assert (quad2d (f, 0, 1, 0, 1, "AbsTol", 1e-8, "RelTol", 1e-6),
%!        2*log (2), -1e-6)
%!assert (quad2d (f, 0, 1, 0, @(x) 1 - x), 1, -1e-6)
%!assert (quad2d (f, 0, 1, 0, @(x) 1 - x, "Singular", true), 1, -1e-6)

%!assert (quad2d (@(x, y) exp (-x.^2 - y.^2) , -1, 1, -1, 1),
%!        pi * erf (1).^2, 1e-10)

%!assert (quad2d (@plus, 1, 2, 3, 4), 5, 1e-10)

%!assert <*62972> (quad2d (@(x,y) 1i*ones (size (x)), 0,1,0,1), 1i)

## Test input validation
%!error <Invalid call> quad2d ()
%!error <Invalid call> quad2d (@plus)
%!error <Invalid call> quad2d (@plus, 1)
%!error <Invalid call> quad2d (@plus, 1, 2)
%!error <Invalid call> quad2d (@plus, 1, 2, 3)
%!error <Invalid call> quad2d (@plus, 1, 2, 3, 4, "foo")
%!error quad2d (0, 1, 2, 3, 4)          # f must be function handle
%!error quad2d (@plus, 1i, 2, 3, 4)     # real limits
%!error quad2d (@plus, 1, 2i, 3, 4)     # real limits
%!error quad2d (@plus, [1 1], 2, 3, 4)  # scalar limits
%!error quad2d (@plus, 1, [2 2], 3, 4)  # scalar limits
%!error <property PROP must be a string> quad2d (@plus, 1, 2, 3, 4, 99, "bar")
%!error <AbsTol value must be a numeric> quad2d (@plus, 1, 2, 3, 4, "AbsTol", "foo")
%!error <AbsTol value must be a .* scalar> quad2d (@plus, 1, 2, 3, 4, "AbsTol", [1, 2])
%!error <AbsTol value must be.* .= 0> quad2d (@plus, 1, 2, 3, 4, "AbsTol", -1)
%!error <RelTol value must be a numeric> quad2d (@plus, 1, 2, 3, 4, "RelTol", "foo")
%!error <RelTol value must be a .* scalar> quad2d (@plus, 1, 2, 3, 4, "RelTol", [1, 2])
%!error <RelTol value must be.* .= 0> quad2d (@plus, 1, 2, 3, 4, "RelTol", -1)
%!error <MaxFunEvals value must be a scalar integer>
%! quad2d (@plus,1,2,3,4, "MaxFunEvals", {1});
%!error <MaxFunEvals value must be a scalar integer>
%! quad2d (@plus,1,2,3,4, "MaxFunEvals", [1 1]);
%!error <MaxFunEvals value must be a scalar integer>
%! quad2d (@plus,1,2,3,4, "MaxFunEvals", 1.5);
%!error <MaxFunEvals value must be a scalar integer .= 1>
%! quad2d (@plus,1,2,3,4, "MaxFunEvals", -1);
%!error <Singular must be a logical value>
%! quad2d (@plus,1,2,3,4, "Singular", [0 1]);
%!error <Singular must be a logical value>
%! quad2d (@plus,1,2,3,4, "Singular", {true});
%!error <Vectorized must be a logical value>
%! quad2d (@plus,1,2,3,4, "Vectorized", [0 1]);
%!error <Vectorized must be a logical value>
%! quad2d (@plus,1,2,3,4, "Vectorized", {true});
%!error <FailurePlot must be a logical value>
%! quad2d (@plus,1,2,3,4, "FailurePlot", [0 1]);
%!error <FailurePlot must be a logical value>
%! quad2d (@plus,1,2,3,4, "FailurePlot", {true});
%!error <unknown property 'foo'>  quad2d (@plus, 1, 2, 3, 4, "foo", "bar")
%!error <YA must be a real scalar> quad2d (@plus, 1, 2, 3i, 4)
%!error <YA must be a real scalar> quad2d (@plus, 1, 2, [3 3], 4)
%!error <YB must be a real scalar> quad2d (@plus, 1, 2, 3, 4i)
%!error <YB must be a real scalar> quad2d (@plus, 1, 2, 3, [4 4])
%!warning <Maximum number of> quad2d (@plus, 1, 2, 3, 4, "MaxFunEvals", 1);