1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
|
########################################################################
##
## Copyright (C) 2017-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{q} =} quad2d (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb})
## @deftypefnx {} {@var{q} =} quad2d (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb}, @var{prop}, @var{val}, @dots{})
## @deftypefnx {} {[@var{q}, @var{err}, @var{iter}] =} quad2d (@dots{})
##
## Numerically evaluate the two-dimensional integral of @var{f} using adaptive
## quadrature over the two-dimensional domain defined by @var{xa}, @var{xb},
## @var{ya}, @var{yb} using tiled integration. Additionally, @var{ya} and
## @var{yb} may be scalar functions of @var{x}, allowing for the integration
## over non-rectangular domains.
##
## @var{f} is a function handle, inline function, or string containing the
## name of the function to evaluate. The function @var{f} must be of the form
## @math{z = f(x,y)}, and all operations must be vectorized such that @var{x}
## and @var{y} accept array inputs and return array outputs of the same size.
## (It can be assumed that @var{x} and @var{y} will either be same-size arrays
## or one will be a scalar.) The underlying integrators will input arrays of
## integration points into @var{f} and/or use internal vector expansions to
## speed computation that can produce unpredictable results if @var{f} is not
## restricted to elementwise operations. For integrands where this is
## unavoidable, the @qcode("Vectorized") option described below may produce
## more reliable results.
##
## Additional optional parameters can be specified using
## @qcode{"@var{property}", @var{value}} pairs. Valid properties are:
##
## @table @code
## @item AbsTol
## Define the absolute error tolerance for the quadrature. The default
## value is 1e-10 (1e-5 for single).
##
## @item RelTol
## Define the relative error tolerance for the quadrature. The default
## value is 1e-6 (1e-4 for single).
##
## @item MaxFunEvals
## The maximum number of function calls to the vectorized function @var{f}.
## The default value is 5000.
##
## @item Singular
## Enable/disable transforms to weaken singularities on the edge of the
## integration domain. The default value is @var{true}.
##
## @item Vectorized
## Enable or disable vectorized integration. A value of @code{false} forces
## Octave to use only scalar inputs when calling the integrand, which enables
## integrands @math{f(x,y)} that have not been vectorized or only accept
## scalar values of @var{x} or @var{y}. The default value is @code{true}.
## Note that this is achieved by wrapping @math{f(x,y)} with the function
## @code{arrayfun}, which may significantly decrease computation speed.
##
## @item FailurePlot
## If @code{quad2d} fails to converge to the desired error tolerance before
## MaxFunEvals is reached, a plot of the areas that still need refinement
## is created. The default value is @var{false}.
## @end table
##
## Adaptive quadrature is used to minimize the estimate of error until the
## following is satisfied:
## @tex
## $$error \leq \max \left( AbsTol, RelTol\cdot\vert q\vert \right)$$
## @end tex
## @ifnottex
##
## @example
## @group
## @var{error} <= max (@var{AbsTol}, @var{RelTol}*|@var{q}|)
## @end group
## @end example
##
## @end ifnottex
##
## The optional output @var{err} is an approximate bound on the error in the
## integral @code{abs (@var{q} - @var{I})}, where @var{I} is the exact value
## of the integral. The optional output @var{iter} is the number of vectorized
## function calls to the function @var{f} that were used.
##
## Example 1 : integrate a rectangular region in x-y plane
##
## @example
## @group
## @var{f} = @@(@var{x},@var{y}) 2*ones (size (@var{x}));
## @var{q} = quad2d (@var{f}, 0, 1, 0, 1)
## @result{} @var{q} = 2
## @end group
## @end example
##
## The result is a volume, which for this constant-value integrand, is just
## @code{@var{Length} * @var{Width} * @var{Height}}.
##
## Example 2 : integrate a triangular region in x-y plane
##
## @example
## @group
## @var{f} = @@(@var{x},@var{y}) 2*ones (size (@var{x}));
## @var{ymax} = @@(@var{x}) 1 - @var{x};
## @var{q} = quad2d (@var{f}, 0, 1, 0, @var{ymax})
## @result{} @var{q} = 1
## @end group
## @end example
##
## The result is a volume, which for this constant-value integrand
## @w{@math{@var{f} = 2}}, is the Triangle Area x Height or
## @w{@code{1/2 * @var{Base} * @var{Width} * @var{Height}}}.
##
## Example 3 : integrate a non-vectorized function over a square region
##
## @example
## @group
## @var{f} = @@(@var{x},@var{y}) sinc (@var{x}) * sinc (@var{y}));
## @var{q} = quad2d (@var{f}, -1, 1, -1, 1)
## @result{} @var{q} = 12.328 (incorrect)
## @var{q} = quad2d (@var{f}, -1, 1, -1, 1, "Vectorized", false)
## @result{} @var{q} = 1.390 (correct)
## @var{f} = @@(@var{x},@var{y}) sinc (@var{x}) .* sinc (@var{y});
## @var{q} = quad2d (@var{f}, -1, 1, -1, 1)
## @result{} @var{q} = 1.390 (correct)
## @end group
## @end example
##
## The first result is incorrect as the non-elementwise operator between the
## sinc functions in @var{f} create unintended matrix multiplications between
## the internal integration arrays used by @code{quad2d}. In the second
## result, setting @qcode{"Vectorized"} to false forces @code{quad2d} to
## perform scalar internal operations to compute the integral, resulting in
## the correct numerical result at the cost of about a 20x increase in
## computation time. In the third result, vectorizing the integrand @var{f}
## using the elementwise multiplication operator gets the correct result
## without increasing computation time.
##
## Programming Notes: If there are singularities within the integration region
## it is best to split the integral and place the singularities on the
## boundary.
##
## Known @sc{matlab} incompatibility: If tolerances are left unspecified, and
## any integration limits are of type @code{single}, then Octave's integral
## functions automatically reduce the default absolute and relative error
## tolerances as specified above. If tighter tolerances are desired they
## must be specified. @sc{matlab} leaves the tighter tolerances appropriate
## for @code{double} inputs in place regardless of the class of the
## integration limits.
##
## Reference: @nospell{L.F. Shampine},
## @cite{@sc{matlab} program for quadrature in 2D}, Applied Mathematics and
## Computation, pp.@: 266--274, Vol 1, 2008.
##
## @seealso{integral2, dblquad, integral, quad, quadgk, quadv, quadl, quadcc,
## trapz, integral3, triplequad}
## @end deftypefn
function [q, err, iter] = quad2d (f, xa, xb, ya, yb, varargin)
if (nargin < 5 || mod (nargin, 2) == 0)
print_usage ();
endif
if (ischar (f))
## Convert function given as a string to a function handle
f = @(x) feval (f, x);
elseif (! is_function_handle (f))
print_usage ();
endif
if (! (isreal (xa) && isscalar (xa) && isreal (xb) && isscalar (xb)))
print_usage ();
endif
## Check for single or double limits to set appropriate default tolerance.
issingle = (isa ([xa, xb], "single")
|| (! is_function_handle (ya) && isa (ya, "single"))
|| (! is_function_handle (yb) && isa (yb, "single")));
## Set defaults, update with any specified parameters.
if (issingle)
abstol = 1e-5;
reltol = 1e-4;
else
abstol = 1e-10;
reltol = 1e-6;
endif
vectorized = true;
singular = true;
idx = 1;
maxiter = 5000;
failureplot = false;
while (idx < nargin - 5)
prop = varargin{idx++};
if (! ischar (prop))
error ("quad2d: property PROP must be a string");
endif
switch (lower (prop))
case "abstol"
abstol = varargin{idx++};
if (! (isnumeric (abstol) && isscalar (abstol) && abstol >= 0))
error ("quad2d: AbsTol value must be a numeric scalar >= 0");
endif
case "reltol"
reltol = varargin{idx++};
if (! (isnumeric (reltol) && isscalar (reltol) && reltol >= 0))
error ("quad2d: RelTol value must be a numeric scalar >= 0");
endif
case "maxfunevals"
maxiter = varargin{idx++};
if (! (isnumeric (maxiter) && isscalar (maxiter)
&& fix (maxiter) == maxiter && maxiter >= 1))
error ("quad2d: MaxFunEvals value must be a scalar integer >= 1");
endif
case "singular"
singular = varargin{idx++};
if (! (isscalar (singular) && isreal (singular)))
error ("quad2d: Singular must be a logical value");
endif
case "vectorized"
vectorized = varargin{idx++};
if (! (isscalar (vectorized) && isreal (vectorized)))
error ("quad2d: Vectorized must be a logical value");
endif
case "failureplot"
failureplot = varargin{idx++};
if (! (isscalar (failureplot) && isreal (failureplot)))
error ("quad2d: FailurePlot must be a logical value");
endif
otherwise
error ("quad2d: unknown property '%s'", prop);
endswitch
endwhile
if (! vectorized)
f = @(x, y) arrayfun (f, x, y);
endif
## check upper and lower bounds of y
if (! is_function_handle (ya))
if (! (isreal (ya) && isscalar (ya)))
error ("quad2d: YA must be a real scalar or a function");
endif
ya = @(x) ya * ones (rows (x), columns (x));
endif
if (! is_function_handle (yb))
if (! (isreal (yb) && isscalar (yb)))
error ("quad2d: YB must be a real scalar or a function");
endif
yb = @(x) yb * ones (rows (x), columns (x));
endif
iter = 0;
qaccept = 0;
qerraccept = 0;
if (singular)
## Shampine suggests using the singularity weakening transform
## suggested by Havie.
## \int_a^b f(x) dx = \int_0^pi f (g(t)) (dx / dt) dt
## where
## g(t) = ((a - b) * cos(t) + (a + b)) / 2
## dx = - (a - b) * sin(t) / 2 dt
## Now our integral is
## \int_a^b \int_0^1 f(x,y) dydx
## as we already substitute for "y", so
## gx(tx) = ((a - b) * cos(tx) + (a + b)) / 2
## gy(ty) = (1 - cos(ty)) / 2
## dydx = (b - a) * sin(tx) * sin(ty) / 4 dtydtx
xtrans = @(tx) ((xa - xb) .* cos (tx) + (xa + xb)) ./ 2;
ytrans = @(ty) (1 - cos (ty)) ./ 2;
ztrans = @(tx, ty) (xb - xa) .* sin (tx) .* sin (ty) ./ 4;
area = pi ^ 2;
## Initialize tile list
tilelist(1) = struct ("xa", 0, "xb", pi, "ya", 0, "yb", pi, ...
"q", 0, "qerr", Inf);
else
xtrans = @(tx) tx;
ytrans = @(ty) ty;
ztrans = @(tx, ty) 1;
area = (xb - xa);
## Initialize tile list
tilelist(1) = struct ("xa", xa, "xb", xb, "ya", 0, "yb", 1, ...
"q", 0, "qerr", Inf);
endif
while (length (tilelist) > 0 && iter < maxiter)
## Get tile with the largest error
[~, idx] = max ([tilelist.qerr]);
tile = tilelist(idx);
tilelist(idx) = [];
## Subdivide the tile into 4 subtiles
iter += 4;
tiles(4) = struct ("xa", tile.xa, "xb", tile.xa + (tile.xb - tile.xa) / 2,
"ya", tile.ya, "yb", tile.ya + (tile.yb - tile.ya) / 2,
"q", 0, "qerr", 0);
tiles(3) = struct ("xa", tile.xa, "xb", tile.xa + (tile.xb - tile.xa) / 2,
"ya", tile.ya + (tile.yb - tile.ya) / 2, "yb", tile.yb,
"q", 0, "qerr", 0);
tiles(2) = struct ("xa", tile.xa + (tile.xb - tile.xa) / 2, "xb", tile.xb,
"ya", tile.ya, "yb", tile.ya + (tile.yb - tile.ya) / 2,
"q", 0, "qerr", 0);
tiles(1) = struct ("xa", tile.xa + (tile.xb - tile.xa) / 2, "xb", tile.xb,
"ya", tile.ya + (tile.yb - tile.ya) / 2, "yb", tile.yb,
"q", 0, "qerr", 0);
## Perform the quadrature of 4 subtiles
for i = 1:4
[tiles(i).q, tiles(i).qerr] = ...
tensorproduct (f, ya, yb, tiles(i), xtrans, ytrans, ztrans, singular);
endfor
q = qaccept + sum ([[tilelist.q], tiles.q]);
err = qerraccept + sum ([[tilelist.qerr], tiles.qerr]);
tol = max (abstol, reltol .* abs (q));
## Shampine suggests taking a margin of a factor of 8 for
## the local tolerance. That, and the fact that we are subdividing
## into 4 tiles, means we divide by 32 at this point.
localtol = tol * ([tile.xb] - [tile.xa]) * ([tile.yb] - [tile.ya]) ...
/ area / 32;
## If global tolerance is met, return.
if (err < tol)
break;
endif
## Accept the tiles meeting the tolerance, and add the others back to
## the list of tiles to treat.
idx = find ([tiles.qerr] < localtol);
qaccept += sum ([tiles(idx).q]);
qerraccept += sum ([tiles(idx).qerr]);
tiles(idx) = [];
tilelist = [tilelist, tiles];
endwhile
## Verify convergence
if (iter >= maxiter)
if (err > max (abstol, reltol .* abs (q)))
warning (["quad2d: " ...
"Maximum number of sub-tiles reached without convergence"]);
else
warning (["quad2d: " ...
"Maximum number of sub-tiles reached, accuracy may be low"]);
endif
if (failureplot)
newplot ();
title ("quad2d : Areas needing refinement");
for tile = tilelist
xaa = xtrans(tile.xa);
xbb = xtrans(tile.xb);
y1 = ya(xaa) + ytrans(tile.ya) * (yb(xaa) - ya(xaa));
y2 = ya(xaa) + ytrans(tile.yb) * (yb(xaa) - ya(xaa));
y3 = ya(xbb) + ytrans(tile.yb) * (yb(xbb) - ya(xbb));
y4 = ya(xbb) + ytrans(tile.ya) * (yb(xbb) - ya(xbb));
patch ([xaa, xaa, xbb, xbb, xaa], [y1, y2, y3, y4, y1], "b");
endfor
endif
endif
endfunction
function [q, qerr] = tensorproduct (f, ya, yb, tile, xtrans, ytrans, ztrans, singular)
## The Shampine TwoD paper proposes using a G3,K7 rule in a tensor product.
## I couldn't find a tabulated abscissas and weights of a G3,K7 rule publicly
## available, so use a G7,K15 rule from Octave's implementation of quadgk.
persistent abscissa = [-0.9914553711208126e+00, -0.9491079123427585e+00, ...
-0.8648644233597691e+00, -0.7415311855993944e+00, ...
-0.5860872354676911e+00, -0.4058451513773972e+00, ...
-0.2077849550078985e+00, 0.0000000000000000e+00, ...
0.2077849550078985e+00, 0.4058451513773972e+00, ...
0.5860872354676911e+00, 0.7415311855993944e+00, ...
0.8648644233597691e+00, 0.9491079123427585e+00, ...
0.9914553711208126e+00];
persistent weights15 = [0.2293532201052922e-01, 0.6309209262997855e-01, ...
0.1047900103222502e+00, 0.1406532597155259e+00, ...
0.1690047266392679e+00, 0.1903505780647854e+00, ...
0.2044329400752989e+00, 0.2094821410847278e+00, ...
0.2044329400752989e+00, 0.1903505780647854e+00, ...
0.1690047266392679e+00, 0.1406532597155259e+00, ...
0.1047900103222502e+00, 0.6309209262997855e-01, ...
0.2293532201052922e-01];
persistent weights7 = [0.0, ...
0.1294849661688697e+00, 0.0, ...
0.2797053914892767e+00, 0.0, ...
0.3818300505051889e+00, 0.0, ...
0.4179591836734694e+00, 0.0, ...
0.3818300505051889e+00, 0.0, ...
0.2797053914892767e+00, 0.0, ...
0.1294849661688697e+00, 0.0];
xaa = tile.xa;
xbb = tile.xb;
yaa = tile.ya;
ybb = tile.yb;
tx = ((xbb - xaa) * abscissa + xaa + xbb) / 2;
x = xtrans(tx);
ty = (abscissa' * (ybb - yaa) + yaa + ybb) / 2;
y = ones (15, 1) * ya(x) + ytrans(ty) * (yb(x) - ya(x));
xhalfwidth = (xbb - xaa ) / 2;
yhalfwidth = ones (15, 1) * (yb(x) - ya(x)) .* (ybb - yaa) ./ 2;
x = ones (15, 1) * x;
tx = ones (15,1) * tx;
ty = ty * ones (1, 15);
z = yhalfwidth .* f (x, y) .* ztrans(tx, ty) .* xhalfwidth;
q = weights15 * (weights15 * z).';
qerr = abs (weights7 * (weights7 * z).' - q);
endfunction
%!shared f
%! f = @(x, y) x .* y;
%!assert (quad2d (f, 0, 1, 0, 1), 0.25, 1e-10)
%!test
%! f = @(x, y) 9 * x.^2 + 15 * y.^2;
%!assert (quad2d (f, 0, 5, -5, 0, "AbsTol", 1e-9), 5000, 1e-9)
%!assert (quad2d (f, 0, 5, -5, 0, "RelTol", 1e-6), 5000, -1e-6)
%!assert (quad2d (f, 0, 5, -5, 0, "RelTol", 1e-6, "AbsTol", 1e-9), 5000, 1e-9)
## tests from dblquad
%!test
%! f = @(x, y) 1 ./ (x+y);
%!assert (quad2d (f, 0, 1, 0, 1, "AbsTol", 1e-7), 2*log (2), 1e-7)
%!assert (quad2d (f, 0, 1, 0, 1, "RelTol", 1e-5), 2*log (2), -1e-5)
%!assert (quad2d (f, 0, 1, 0, 1, "AbsTol", 1e-8, "RelTol", 1e-6),
%! 2*log (2), -1e-6)
%!assert (quad2d (f, 0, 1, 0, @(x) 1 - x), 1, -1e-6)
%!assert (quad2d (f, 0, 1, 0, @(x) 1 - x, "Singular", true), 1, -1e-6)
%!assert (quad2d (@(x, y) exp (-x.^2 - y.^2) , -1, 1, -1, 1),
%! pi * erf (1).^2, 1e-10)
%!assert (quad2d (@plus, 1, 2, 3, 4), 5, 1e-10)
%!assert <*62972> (quad2d (@(x,y) 1i*ones (size (x)), 0,1,0,1), 1i)
## Test input validation
%!error <Invalid call> quad2d ()
%!error <Invalid call> quad2d (@plus)
%!error <Invalid call> quad2d (@plus, 1)
%!error <Invalid call> quad2d (@plus, 1, 2)
%!error <Invalid call> quad2d (@plus, 1, 2, 3)
%!error <Invalid call> quad2d (@plus, 1, 2, 3, 4, "foo")
%!error quad2d (0, 1, 2, 3, 4) # f must be function handle
%!error quad2d (@plus, 1i, 2, 3, 4) # real limits
%!error quad2d (@plus, 1, 2i, 3, 4) # real limits
%!error quad2d (@plus, [1 1], 2, 3, 4) # scalar limits
%!error quad2d (@plus, 1, [2 2], 3, 4) # scalar limits
%!error <property PROP must be a string> quad2d (@plus, 1, 2, 3, 4, 99, "bar")
%!error <AbsTol value must be a numeric> quad2d (@plus, 1, 2, 3, 4, "AbsTol", "foo")
%!error <AbsTol value must be a .* scalar> quad2d (@plus, 1, 2, 3, 4, "AbsTol", [1, 2])
%!error <AbsTol value must be.* .= 0> quad2d (@plus, 1, 2, 3, 4, "AbsTol", -1)
%!error <RelTol value must be a numeric> quad2d (@plus, 1, 2, 3, 4, "RelTol", "foo")
%!error <RelTol value must be a .* scalar> quad2d (@plus, 1, 2, 3, 4, "RelTol", [1, 2])
%!error <RelTol value must be.* .= 0> quad2d (@plus, 1, 2, 3, 4, "RelTol", -1)
%!error <MaxFunEvals value must be a scalar integer>
%! quad2d (@plus,1,2,3,4, "MaxFunEvals", {1});
%!error <MaxFunEvals value must be a scalar integer>
%! quad2d (@plus,1,2,3,4, "MaxFunEvals", [1 1]);
%!error <MaxFunEvals value must be a scalar integer>
%! quad2d (@plus,1,2,3,4, "MaxFunEvals", 1.5);
%!error <MaxFunEvals value must be a scalar integer .= 1>
%! quad2d (@plus,1,2,3,4, "MaxFunEvals", -1);
%!error <Singular must be a logical value>
%! quad2d (@plus,1,2,3,4, "Singular", [0 1]);
%!error <Singular must be a logical value>
%! quad2d (@plus,1,2,3,4, "Singular", {true});
%!error <Vectorized must be a logical value>
%! quad2d (@plus,1,2,3,4, "Vectorized", [0 1]);
%!error <Vectorized must be a logical value>
%! quad2d (@plus,1,2,3,4, "Vectorized", {true});
%!error <FailurePlot must be a logical value>
%! quad2d (@plus,1,2,3,4, "FailurePlot", [0 1]);
%!error <FailurePlot must be a logical value>
%! quad2d (@plus,1,2,3,4, "FailurePlot", {true});
%!error <unknown property 'foo'> quad2d (@plus, 1, 2, 3, 4, "foo", "bar")
%!error <YA must be a real scalar> quad2d (@plus, 1, 2, 3i, 4)
%!error <YA must be a real scalar> quad2d (@plus, 1, 2, [3 3], 4)
%!error <YB must be a real scalar> quad2d (@plus, 1, 2, 3, 4i)
%!error <YB must be a real scalar> quad2d (@plus, 1, 2, 3, [4 4])
%!warning <Maximum number of> quad2d (@plus, 1, 2, 3, 4, "MaxFunEvals", 1);
|