File: quadgk.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (674 lines) | stat: -rw-r--r-- 25,225 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
########################################################################
##
## Copyright (C) 2008-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{q} =} quadgk (@var{f}, @var{a}, @var{b})
## @deftypefnx {} {@var{q} =} quadgk (@var{f}, @var{a}, @var{b}, @var{abstol})
## @deftypefnx {} {@var{q} =} quadgk (@var{f}, @var{a}, @var{b}, @var{abstol}, @var{trace})
## @deftypefnx {} {@var{q} =} quadgk (@var{f}, @var{a}, @var{b}, "@var{prop}", @var{val}, @dots{})
## @deftypefnx {} {[@var{q}, @var{err}] =} quadgk (@dots{})
##
## Numerically evaluate the integral of @var{f} from @var{a} to @var{b}
## using adaptive @nospell{Gauss-Kronrod} quadrature.
##
## @var{f} is a function handle, inline function, or string containing the name
## of the function to evaluate.  The function @var{f} must be vectorized and
## return a vector of output values when given a vector of input values (See
## property @qcode{"ArrayValued"} for an exception to this rule).
##
## @var{a} and @var{b} are the lower and upper limits of integration.  Either
## or both limits may be infinite or contain weak end singularities.  Variable
## transformation will be used to treat any infinite intervals and weaken the
## singularities.  For example:
##
## @example
## quadgk (@@(x) 1 ./ (sqrt (x) .* (x + 1)), 0, Inf)
## @end example
##
## @noindent
## Note that the formulation of the integrand uses the element-by-element
## operator @code{./} and all user functions to @code{quadgk} should do the
## same.
##
## The optional argument @var{abstol} defines the absolute tolerance used to
## stop the integration procedure.  The default value is 1e-10 (1e-5 for
## single).
##
## The algorithm used by @code{quadgk} involves subdividing the integration
## interval and evaluating each subinterval.  If @var{trace} is true then after
## computing each of these partial integrals display: (1) the number of
## subintervals at this step, (2) the current estimate of the error @var{err},
## (3) the current estimate for the integral @var{q}.
##
## The behavior of the algorithm can be configured by passing arguments to
## @code{quadgk} as pairs @qcode{"@var{prop}", @var{val}}.  Valid properties
## are
##
## @table @code
## @item AbsTol
## Define the absolute error tolerance for the quadrature.  The default
## absolute tolerance is 1e-10 (1e-5 for single).
##
## @item RelTol
## Define the relative error tolerance for the quadrature.  The default
## relative tolerance is 1e-6 (1e-4 for single).
##
## @item ArrayValued
## When set to true, the function @var{f} produces an array output for a scalar
## input.  The default is false which requires that @var{f} produce an output
## that is the same size as the input.  For example,
##
## @example
## quadgk (@@(x) x .^ (1:5), 0, 2, "ArrayValued", 1)
## @end example
##
## @noindent
## will integrate @code{[x.^1, x.^2, x.^3, x.^4, x.^5]} in one function call
## rather than having to repeatedly define a single anonymous function and
## use a normal invocation of @code{quadgk}.
##
## @item WayPoints
## Specify points which will become endpoints for subintervals in the
## algorithm which can result in significantly improved estimation of the error
## in the integral, faster computation, or both.  It can be useful to specify
## more subintervals around a region where the integrand is rapidly changing or
## to flag locations where there is a discontinuity in the first derivative
## of the function.  For example, the signum function has a discontinuity at
## @code{x == 0} and by specifying a waypoint
##
## @example
## quadgk (@@(x) sign (x), -0.5, 1, "Waypoints", [0])
## @end example
##
## @noindent
## the error bound is reduced from 4e-7 to 1e-13.
##
## If the function has @strong{singularities} within the region of integration
## those should not be addressed with waypoints.  Instead, the overall integral
## should be decomposed into a sum of several smaller integrals such that the
## singularity occurs as one of the bounds of integration in the call to
## @code{quadgk}.
##
## If any of the waypoints are complex then contour integration is performed as
## documented below.
##
## @item MaxIntervalCount
## @code{quadgk} initially subdivides the interval on which to perform the
## quadrature into 10 intervals or, if WayPoints are given, at each waypoint.
## Subintervals that have an unacceptable error are subdivided and
## re-evaluated.  If the number of subintervals exceeds 650 subintervals at any
## point then a poor convergence is signaled and the current estimate of the
## integral is returned.  The property @qcode{"MaxIntervalCount"} can be used
## to alter the number of subintervals that can exist before exiting.
##
## @item Trace
## If logically true @code{quadgk} prints information on the convergence of the
## quadrature at each iteration.
## @end table
##
## If any of @var{a}, @var{b}, or @var{waypoints} is complex then the
## quadrature is treated as a contour integral along a piecewise linear
## path defined by
## @code{[@var{a}, @var{waypoints}(1), @var{waypoints}(2), @dots{}, @var{b}]}.
## In this case the integral is assumed to have no edge singularities.  For
## example,
##
## @example
## @group
## quadgk (@@(z) log (z), 1+1i, 1+1i, "WayPoints",
##         [-1+1i, -1-1i, +1-1i])
## @end group
## @end example
##
## @noindent
## integrates @code{log (z)} along the square defined by
## @code{[1+1i, -1+1i, -1-1i, +1-1i]}.
##
## The result of the integration is returned in @var{q}.
##
## @var{err} is an approximate bound on the error in the integral
## @w{@code{abs (@var{q} - @var{I})}}, where @var{I} is the exact value of the
## integral.  If the adaptive integration did not converge, the value of
## @var{err} will be larger than the requested tolerance.  If only a single
## output is requested then a warning will be emitted when the requested
## tolerance is not met.  If the second output @var{err} is requested then no
## warning is issued and it is the responsibility of the programmer to inspect
## and determine whether the results are satisfactory.
##
## Reference: @nospell{L.F. Shampine},
## @cite{"Vectorized adaptive quadrature in @sc{matlab}"}, Journal of
## Computational and Applied Mathematics, pp.@: 131--140, Vol 211, Issue 2,
## Feb 2008.
##
## @seealso{quad, quadv, quadl, quadcc, trapz, dblquad, triplequad, integral,
##          integral2, integral3}
## @end deftypefn

function [q, err] = quadgk (f, a, b, varargin)

  if (nargin < 3)
    print_usage ();
  endif

  abstol = [];
  reltol = [];
  waypoints = [];
  maxint = 650;
  arrayvalued = false;
  trace = false;

  ## Parse options if present.
  if (nargin > 3)
    if (! ischar (varargin{1}))
      if (! isempty (varargin{1}))
        abstol = varargin{1};
        reltol = 0;
      endif
      if (nargin > 4)
        trace = varargin{2};
      endif
      if (nargin > 5)
        error ("quadgk: can not pass additional arguments to user function");
      endif
    else
      if (mod (nargin - 3, 2) != 0)
        error ("quadgk: property/value options must occur in pairs");
      endif

      idx = 1;
      while (idx < nargin - 3)
        if (! ischar (varargin{idx}))
          error ("quadgk: property PROP must be a string");
        endif
        prop = varargin{idx++};
        switch (lower (prop))
          case "reltol"
            reltol = varargin{idx++};
          case "abstol"
            abstol = varargin{idx++};
          case "waypoints"
            waypoints = varargin{idx++}(:);
          case "maxintervalcount"
            maxint = varargin{idx++};
          case "arrayvalued"
            arrayvalued = varargin{idx++};
          case "trace"
            trace = varargin{idx++};
          otherwise
            error ("quadgk: unknown property '%s'", prop);
        endswitch
      endwhile
    endif
  endif

  reverse = 1;
  contour = iscomplex (a) || iscomplex (b) || iscomplex (waypoints);
  if ((b < a) && ! contour)
    ## Reverse integration
    [b, a] = deal (a, b);
    waypoints = sort (waypoints(waypoints > a & waypoints < b));
    reverse = -1;
  endif

  issingle = (isa (a, "single") || isa (b, "single")
              || isa (waypoints, "single"));

  if (isempty (abstol))
    abstol = ifelse (issingle, 1e-5, 1e-10);
  elseif (! isscalar (abstol) || abstol < 0)
    error ("quadgk: ABSTOL must be a scalar >=0");
  endif

  if (isempty (reltol))
    reltol = ifelse (issingle, 1e-4, 1e-6);
  elseif (! isscalar (reltol) || reltol < 0)
    error ("quadgk: RELTOL must be a scalar >=0");
  endif

  ## FIXME: No validation of inputs MaxIntervalCount, Waypoints, ArrayValued,
  ##        Trace.

  ## Convert function given as a string to a function handle
  if (ischar (f))
    f = @(x) feval (f, x);
  endif

  ## Use variable substitution to weaken endpoint singularities and
  ## to perform integration with endpoints at infinity.
  ## No transform for contour integrals.
  if (contour)
    ## contour integral, no transform
    subs = [a; waypoints; b];
    h = sum (abs (diff (subs)));
    trans = @(t) t;
    ## Ensure f is always vectorized even if specified as, e.g., f = @(x) 1;
    f = @(t) f (t) + 0*t;
  elseif (isinf (a) && isinf (b))
    ## Standard infinite to finite integral transformation.
    ##   \int_{-\infinity_^\infinity f(x) dx = \int_-1^1 f (g(t)) g'(t) dt
    ## where
    ##   g(t)  = t / (1 - t^2)
    ##   g'(t) =  (1 + t^2) / (1 - t^2) ^ 2
    ## waypoint transform is then
    ##   t =  (2 * g(t)) ./ (1 + sqrt(1 + 4 * g(t) .^ 2))
    if (! isempty (waypoints))
      trans = @(x) (2 * x) ./ (1 + sqrt (1 + 4 * x .^ 2));
      subs = [-1; trans(waypoints); 1];
    else
      subs = linspace (-1, 1, 11)';
    endif
    h = 2;
    trans = @(t) t ./ (1 - t.^2);
    f = @(t) f (t ./ (1 - t .^ 2)) .* (1 + t .^ 2) ./ ((1 - t .^ 2) .^ 2);
  elseif (isinf (a))
    ## Formula defined in Shampine paper as two separate steps.
    ## One to weaken singularity at finite end, then a second to transform to
    ## a finite interval.  The singularity weakening transform is
    ##   \int_{-\infinity}^b f(x) dx =
    ##               - \int_{-\infinity}^0 f (b - t^2) 2 t dt
    ## (note minus sign) and the finite interval transform is
    ##   \int_{-\infinity}^0 f(b - t^2)  2 t dt =
    ##                  \int_{-1}^0 f (b - g(s) ^ 2) 2 g(s) g'(s) ds
    ## where
    ##   g(s)  = s / (1 + s)
    ##   g'(s) = 1 / (1 + s) ^ 2
    ## waypoint transform is then
    ##   t = sqrt (b - x)
    ##   s =  - t / (t + 1)
    if (! isempty (waypoints))
      tmp = sqrt (b - waypoints);
      trans = @(x) - x ./ (x + 1);
      subs = [-1; trans(tmp); 0];
    else
      subs = linspace (-1, 0, 11)';
    endif
    h = 1;
    trans = @(t) b - (t ./ (1 + t)).^2;
    f = @(s) - 2 * s .* f (b -  (s ./ (1 + s)) .^ 2) ./ ((1 + s) .^ 3);
  elseif (isinf (b))
    ## Formula defined in Shampine paper as two separate steps.
    ## One to weaken singularity at finite end, then a second to transform to
    ## a finite interval.  The singularity weakening transform is
    ##   \int_a^\infinity f(x) dx = \int_0^\infinity f (a + t^2) 2 t dt
    ## and the finite interval transform is
    ##  \int_0^\infinity f(a + t^2)  2 t dt =
    ##           \int_0^1 f (a + g(s) ^ 2) 2 g(s) g'(s) ds
    ## where
    ##   g(s)  = s / (1 - s)
    ##   g'(s) = 1 / (1 - s) ^ 2
    ## waypoint transform is then
    ##   t = sqrt (x - a)
    ##   s = t / (t + 1)
    if (! isempty (waypoints))
      tmp = sqrt (waypoints - a);
      trans = @(x) x ./ (x + 1);
      subs = [0; trans(tmp); 1];
    else
      subs = linspace (0, 1, 11)';
    endif
    h = 1;
    trans = @(t) a + (t ./ (1 - t)).^2;
    f = @(s) 2 * s .* f (a +  (s ./ (1 - s)) .^ 2) ./ ((1 - s) .^ 3);
  else
    ## Davis, Rabinowitz, "Methods of Numerical Integration" p441 2ed.
    ## Presented in section 5 of the Shampine paper as
    ##   g(t) = ((b - a) / 2) * (t / 2 * (3 - t^2)) + (b + a) / 2
    ##   g'(t) = ((b-a)/4) * (3 - 3t^2);
    ## waypoint transform can then be found by solving for t with
    ## Maxima (solve (c + 3*t -  3^3, t);).  This gives 3 roots, two of
    ## which are complex for values between a and b and so can be ignored.
    ## The third is
    ##  c = (-4*x + 2*(b+a)) / (b-a);
    ##  k = ((sqrt(c^2 - 4) + c)/2)^(1/3);
    ##  t = (sqrt(3)* 1i * (1 - k^2) - (1 + k^2)) / 2 / k;
    if (! isempty (waypoints))
      trans = @__quadgk_finite_waypoint__;
      subs = [-1; trans(waypoints, a, b); 1];
    else
      subs = linspace (-1, 1, 11)';
    endif
    h = 2;
    trans = @(t) ((b - a) ./ 4) * t .* (3 - t.^2) + (b + a) ./ 2;
    f = @(t) f((b - a) ./ 4 .* t .* (3 - t.^2) + (b + a) ./ 2) .* ...
         3 .* (b - a) ./ 4 .* (1 - t.^2);
  endif

  ## Split interval into at least 10 subinterval with a 15 point
  ## Gauss-Kronrod rule giving a minimum of 150 function evaluations.
  while (numel (subs) < 11)
    subs = [subs.' ; subs(1:end-1).' + diff(subs.') ./ 2, NaN](:)(1:end-1);
  endwhile
  subs = [subs(1:end-1), subs(2:end)];

  warn_id = "Octave:quadgk:warning-termination";

  if (! arrayvalued)
    ## Initial evaluation of the integrand on the subintervals.
    [q_subs, q_errs] = __quadgk_eval__ (f, subs, trans);
    q0 = sum (q_subs);
    err0 = sum (q_errs);

    first = true;
    while (true)
      ## Quit if any evaluations are not finite (Inf or NaN).
      if (any (! isfinite (q_subs)))
        warning (warn_id, "quadgk: non-finite integrand encountered");
        q = q0;
        err = err0;
        break;
      endif

      tol = max (abstol, reltol .* abs (q0));

      ## If the global error estimate is met then exit.
      if (err0 <= tol)
        q = q0;
        err = err0;
        break;
      endif

      ## Accept the subintervals that meet the convergence criteria.
      idx = find (abs (q_errs) < tol .* abs (diff (subs, 1, 2)) ./ h);
      if (first)
        q = sum (q_subs(idx));
        err = sum (q_errs(idx));
        first = false;
      else
        q0 = q + sum (q_subs);
        err0 = err + sum (q_errs);
        q += sum (q_subs(idx));
        err += sum (q_errs(idx));
      endif
      subs(idx,:) = [];

      ## If no remaining subintervals then exit.
      if (isempty (subs))
        break;
      endif

      if (trace)
        disp ([rows(subs), err, q0]);
      endif

      ## Split remaining subintervals in two
      mid = (subs(:,1) + subs(:,2)) ./ 2;
      subs = [subs(:,1), mid; mid, subs(:,2)];

      ## If the maximum subinterval count is met, then
      ## accept remaining subinterval and exit.
      if (rows (subs) > maxint)
        warning (warn_id, "quadgk: maximum interval count (%d) exceeded", maxint);
        q += sum (q_subs);
        err += sum (q_errs);
        break;
      endif

      ## Evaluation of the integrand on the remaining subintervals
      [q_subs, q_errs] = __quadgk_eval__ (f, subs, trans);
    endwhile

    if (nargout < 2 && err > max (abstol, reltol * abs (q)))
      warning (warn_id,
               "quadgk: Error tolerance not met.  Estimated error %g", err);
    endif

    ## Reverse integral if necessary.
    q = reverse * q;

  else
    ## f is array-valued
    sz = size (f (subs(1)));

    ## Initial evaluation of the integrand on the subintervals
    [q_subs, q_errs] = __quadgk_eval_array__ (f, subs, trans, prod (sz));
    q0 = sum (q_subs, 1);
    err0 = sum (q_errs, 1);

    first = true;
    while (true)
      ## Quit if any evaluations are not finite (Inf or NaN).
      if (any (! isfinite (q_subs)(:)))
        warning (warn_id, "quadgk: non-finite integrand encountered");
        q = q0;
        err = err0;
        break;
      endif

      tol = max (abstol, reltol .* abs (q0));

      ## If the global error estimate is met then exit
      if (err0 <= tol)
        q = q0;
        err = err0;
        break;
      endif

      ## Accept subintervals that meet the convergence criteria in all entries.
      idx = find (all (abs (q_errs) < tol .* abs (diff (subs, 1, 2)) ./ h, 2));
      if (first)
        q = sum (q_subs(idx,:), 1);
        err = sum (q_errs(idx,:), 1);
        first = false;
      else
        q0 = q + sum (q_subs, 1);
        err0 = err + sum (q_errs, 1);
        q += sum (q_subs(idx,:), 1);
        err += sum (q_errs(idx,:), 1);
      endif
      subs(idx,:) = [];

      ## If no remaining subintervals exit
      if (isempty (subs))
        break;
      endif

      if (trace)
        disp ([rows(subs), err(1, 1), q0(1, 1)]); # print only first entry
      endif

      ## Split remaining subintervals in two
      mid = (subs(:,1) + subs(:,2)) ./ 2;
      subs = [subs(:,1), mid; mid, subs(:,2)];

      ## If the maximum subinterval count is met accept remaining subinterval
      ## and exit
      if (rows (subs) > maxint)
        warning (warn_id, "quadgk: maximum interval count (%d) exceeded", maxint);
        q += sum (q_subs, 1);
        err += sum (q_errs, 1);
        break;
      endif

      ## Evaluation of the integrand on the remaining subintervals
      [q_subs, q_errs] = __quadgk_eval_array__ (f, subs, trans, prod (sz));
    endwhile

    i = find (err > max (abstol, reltol * abs (q)), 1);
    if (nargout < 2 && length (i) > 0)
      ## like ind2sub, only as vector.
      j = mod (floor ((i-1)./cumprod ([1 sz(1:end-1)])),sz)+1;
      s = ["(" sprintf("%d,",j)(1:end-1) ")"];
      warning (warn_id,
               "quadgk: Error tolerance not met.  First entry at index %s with estimated error %g", s, err(i));
    endif

    q = reverse * reshape (q, sz);
    err = reshape (err, sz);
  endif

endfunction

function [q, err] = __quadgk_eval__ (f, subs, trans)

  ## A (15,7) point pair of Gauss-Kronrod quadrature rules.
  ## The abscissa and weights are copied directly from dqk15w.f from quadpack.

  persistent abscissa = [-0.9914553711208126e+00, -0.9491079123427585e+00, ...
                         -0.8648644233597691e+00, -0.7415311855993944e+00, ...
                         -0.5860872354676911e+00, -0.4058451513773972e+00, ...
                         -0.2077849550078985e+00,  0.0000000000000000e+00, ...
                          0.2077849550078985e+00,  0.4058451513773972e+00, ...
                          0.5860872354676911e+00,  0.7415311855993944e+00, ...
                          0.8648644233597691e+00,  0.9491079123427585e+00, ...
                          0.9914553711208126e+00];

  persistent weights15 = ...
      diag ([0.2293532201052922e-01,  0.6309209262997855e-01, ...
             0.1047900103222502e+00,  0.1406532597155259e+00, ...
             0.1690047266392679e+00,  0.1903505780647854e+00, ...
             0.2044329400752989e+00,  0.2094821410847278e+00, ...
             0.2044329400752989e+00,  0.1903505780647854e+00, ...
             0.1690047266392679e+00,  0.1406532597155259e+00, ...
             0.1047900103222502e+00,  0.6309209262997855e-01, ...
             0.2293532201052922e-01]);

  persistent weights7 = ...
      diag ([0.1294849661688697e+00,  0.2797053914892767e+00, ...
             0.3818300505051889e+00,  0.4179591836734694e+00, ...
             0.3818300505051889e+00,  0.2797053914892767e+00, ...
             0.1294849661688697e+00]);

  halfwidth = diff (subs, 1, 2) ./ 2;
  center = sum (subs, 2) ./ 2;
  t = (halfwidth * abscissa) + center;
  x = trans ([t(:,1), t(:,end)]);

  y = reshape (f (t(:)), size (t));

  ## This is faster than using bsxfun as the * operator can use a
  ## single BLAS call, rather than rows (sub) calls to the @times function.
  q = sum (y * weights15, 2) .* halfwidth;
  err = abs (sum (y(:,2:2:end) * weights7, 2) .* halfwidth - q);

endfunction

function [q, err] = __quadgk_eval_array__ (f, subs, trans, nel)

  ## A (15,7) point pair of Gauss-Kronrod quadrature rules.
  ## The abscissa and weights are copied directly from dqk15w.f from quadpack.

  persistent abscissa = [-0.9914553711208126e+00, -0.9491079123427585e+00, ...
                         -0.8648644233597691e+00, -0.7415311855993944e+00, ...
                         -0.5860872354676911e+00, -0.4058451513773972e+00, ...
                         -0.2077849550078985e+00,  0.0000000000000000e+00, ...
                          0.2077849550078985e+00,  0.4058451513773972e+00, ...
                          0.5860872354676911e+00,  0.7415311855993944e+00, ...
                          0.8648644233597691e+00,  0.9491079123427585e+00, ...
                          0.9914553711208126e+00];

  persistent weights15 = ...
            [0.2293532201052922e-01,  0.6309209262997855e-01, ...
             0.1047900103222502e+00,  0.1406532597155259e+00, ...
             0.1690047266392679e+00,  0.1903505780647854e+00, ...
             0.2044329400752989e+00,  0.2094821410847278e+00, ...
             0.2044329400752989e+00,  0.1903505780647854e+00, ...
             0.1690047266392679e+00,  0.1406532597155259e+00, ...
             0.1047900103222502e+00,  0.6309209262997855e-01, ...
             0.2293532201052922e-01];

  persistent weights7 = ...
            [0.1294849661688697e+00,  0.2797053914892767e+00, ...
             0.3818300505051889e+00,  0.4179591836734694e+00, ...
             0.3818300505051889e+00,  0.2797053914892767e+00, ...
             0.1294849661688697e+00];

  halfwidth = diff (subs, 1, 2) ./ 2;
  center = sum (subs, 2) ./ 2;
  t = (halfwidth * abscissa) + center;
  x = trans ([t(:,1), t(:,end)]);

  y = zeros (nel, columns(t), rows(t));
  for i = 1:rows (t)
    for j = 1:columns(t)
      y(:,j,i) = f (t(i,j))(:);
    endfor
  endfor
  y = permute (y, [2 3 1]);

  q = reshape (weights15 * y(:,:), [rows(t), nel]) .* halfwidth;
  err = abs (reshape (weights7 * y(2:2:end,:), rows (t), nel) .* halfwidth - q);

endfunction

function t = __quadgk_finite_waypoint__ (x, a, b)
  c = (-4 .* x + 2.* (b + a)) ./ (b - a);
  k = ((sqrt (c .^ 2 - 4) + c) ./ 2) .^ (1/3);
  t = real ((sqrt (3) .* 1i * (1 - k .^ 2) - (1 + k .^ 2)) ./ 2 ./ k);
endfunction


%!assert (quadgk (@sin,-pi,pi), 0, 1e-10)
%!test
%! warning ("off", "Octave:legacy-function", "local");
%! assert (quadgk (inline ("sin"), -pi, pi), 0, 1e-10);
%!assert (quadgk ("sin",-pi,pi), 0, 1e-10)
%!assert (quadgk (@sin,-pi,pi, "WayPoints", 0, "MaxIntervalCount", 100,
%!                "RelTol", 1e-3, "AbsTol", 1e-6, "trace", false), 0, 1e-6)
%!assert (quadgk (@sin,-pi,pi, 1e-6, false), 0, 1e-6)
%!assert <*51867> (quadgk (@(x) x, 0, 0), 0, 0)

%!assert (quadgk (@sin,-pi,0), -2, 1e-10)
%!assert (quadgk (@sin,0,pi), 2, 1e-10)
%!assert (quadgk (@(x) 1./sqrt (x),0,1), 2, 1e-10)
%!assert (quadgk (@(x) abs (1 - x.^2),0,2, "Waypoints", 1), 2, 1e-10)
%!assert (quadgk (@(x) 1./(sqrt (x) .* (x+1)),0,Inf), pi, 1e-10)
%!assert <*57614> (quadgk (@(z) exp (z)./z, 1, 1,
%!                        "Waypoints", [1+i, -1+i, -1-i, 1-i]),
%!                 complex (0, 2*pi), 1e-10)
%!assert <*57614> (quadgk (@(z) exp (z)./z, 1, 1,
%!                        "Waypoints", [1-i, -1-i, -1+i, 1+i]),
%!                 complex (0, -2*pi), 1e-10)
%!assert (quadgk (@(z) log (z),1+1i,1+1i, "WayPoints", [1-1i, -1,-1i, -1+1i]),
%!        complex (0, pi), 1e-10)
%!assert (quadgk (@(x) exp (-x .^ 2),-Inf,Inf), sqrt (pi), -1e-6)
%!assert (quadgk (@(x) exp (-x .^ 2),-Inf,0), sqrt (pi)/2, -1e-6)
%!test
%! f = @(x) x .^ 5 .* exp (-x) .* sin (x);
%! assert (quadgk (f, 0, Inf, "RelTol", 1e-8, "AbsTol", 1e-12), -15, -1e-8);

## Test vector-valued functions
%!assert (quadgk (@(x) [(sin (x)), (sin (2 * x))], 0, pi, "arrayvalued", 1),
%!        [2, 0], 1e-6)

## Test matrix-valued functions
%!assert (quadgk (@(x) [ x,x,x; x,1./sqrt(x),x; x,x,x ], 0, 1, "arrayvalued",1),
%!        [0.5,0.5,0.5; 0.5,2,0.5; 0.5,0.5,0.5], 15*1e-6);

## Bug #62412
%!warning <Error tolerance not met>
%! f = @(t) -1 ./ t.^1.1;
%! quadgk (f, 1, Inf);

## Test input validation
%!error quadgk (@sin)
%!error quadgk (@sin, 0)
%!error <can not pass additional arguments> quadgk (@sin, 0, 1, 1e-6, true, 4)
%!error <options must occur in pairs> quadgk (@sin, 0, 1, "DummyArg")
%!error <PROP must be a string> quadgk (@sin, 0, 1, "AbsTol", 1e-6, 2, 3)
%!error <unknown property 'foo'> quadgk (@sin, 0, 1, "foo", 3)
%!error <ABSTOL must be a scalar> quadgk (@sin, 0, 1, ones (2,2))
%!error <ABSTOL must be a scalar .=0> quadgk (@sin, 0, 1, -1)
%!error <RELTOL must be a scalar> quadgk (@sin, 0, 1, "RelTol", ones (2,2))
%!error <RELTOL must be a scalar> quadgk (@sin, 0, 1, "RelTol", -1)