1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
########################################################################
##
## Copyright (C) 1998-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{q} =} quadl (@var{f}, @var{a}, @var{b})
## @deftypefnx {} {@var{q} =} quadl (@var{f}, @var{a}, @var{b}, @var{tol})
## @deftypefnx {} {@var{q} =} quadl (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace})
## @deftypefnx {} {@var{q} =} quadl (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace}, @var{p1}, @var{p2}, @dots{})
## @deftypefnx {} {[@var{q}, @var{nfev}] =} quadl (@dots{})
##
## Numerically evaluate the integral of @var{f} from @var{a} to @var{b} using
## an adaptive @nospell{Lobatto} rule.
##
## @var{f} is a function handle, inline function, or string containing the name
## of the function to evaluate. The function @var{f} must be vectorized and
## return a vector of output values when given a vector of input values.
##
## @var{a} and @var{b} are the lower and upper limits of integration. Both
## limits must be finite.
##
## The optional argument @var{tol} defines the absolute tolerance with which
## to perform the integration. The default value is 1e-6.
##
## The algorithm used by @code{quadl} involves recursively subdividing the
## integration interval. If @var{trace} is defined then for each subinterval
## display: (1) the total number of function evaluations, (2) the left end of
## the subinterval, (3) the length of the subinterval, (4) the approximation of
## the integral over the subinterval.
##
## Additional arguments @var{p1}, etc., are passed directly to the function
## @var{f}. To use default values for @var{tol} and @var{trace}, one may pass
## empty matrices ([]).
##
## The result of the integration is returned in @var{q}.
##
## The optional output @var{nfev} indicates the total number of function
## evaluations performed.
##
## Reference: @nospell{W. Gander and W. Gautschi}, @cite{Adaptive Quadrature -
## Revisited}, BIT Vol.@: 40, No.@: 1, March 2000, pp.@: 84--101.
## @url{https://www.inf.ethz.ch/personal/gander/}
## @seealso{quad, quadv, quadgk, quadcc, trapz, dblquad, triplequad, integral,
## integral2, integral3}
## @end deftypefn
## Original Author: Walter Gautschi
## Date: 08/03/98
## Reference: Gander, Computermathematik, Birkhaeuser, 1992.
## 2003-08-05 Shai Ayal
## * permission from author to release as GPL
function [q, nfev] = quadl (f, a, b, tol = [], trace = false, varargin)
if (nargin < 3)
print_usage ();
endif
if (isa (a, "single") || isa (b, "single"))
eps = eps ("single");
else
eps = eps ("double");
endif
if (isempty (tol))
tol = 1e-6;
elseif (! isscalar (tol) || tol < 0)
error ("quadl: TOL must be a scalar >=0");
elseif (tol < eps)
warning ("quadl: TOL specified is smaller than machine precision, using %g",
tol);
tol = eps;
endif
if (isempty (trace))
trace = false;
endif
y = feval (f, [a, b], varargin{:});
nfev = 1;
fa = y(1);
fb = y(2);
h = b - a;
[q, nfev, hmin] = adaptlobstp (f, a, b, fa, fb, Inf, nfev, abs (h),
tol, trace, varargin{:});
if (nfev > 10_000)
warning ("quadl: maximum iteration count reached -- possible singular integral");
elseif (any (! isfinite (q(:))))
warning ("quadl: infinite or NaN function evaluations were returned");
elseif (hmin < (b - a) * eps)
warning ("quadl: minimum step size reached -- possible singular integral");
endif
endfunction
function [q, nfev, hmin] = adaptlobstp (f, a, b, fa, fb, q0, nfev, hmin,
tol, trace, varargin)
persistent alpha = sqrt (2/3);
persistent beta = 1 / sqrt (5);
if (nfev > 10_000)
q = q0;
return;
endif
h = (b - a) / 2;
m = (a + b) / 2;
mll = m - alpha*h;
ml = m - beta*h;
mr = m + beta*h;
mrr = m + alpha*h;
x = [mll, ml, m, mr, mrr];
y = feval (f, x, varargin{:});
nfev += 1;
fmll = y(1);
fml = y(2);
fm = y(3);
fmr = y(4);
fmrr = y(5);
i2 = (h/6)*(fa + fb + 5*(fml+fmr));
i1 = (h/1470)*(77*(fa+fb) + 432*(fmll+fmrr) + 625*(fml+fmr) + 672*fm);
if (abs (b - a) < hmin)
hmin = abs (b - a);
endif
if (trace)
disp ([nfev, a, b-a, i1]);
endif
## Force at least one adaptive step (nfev > 2 test).
if ((abs (i1-i2) < tol || mll <= a || b <= mrr) && nfev > 2)
q = i1;
else
q = zeros (6, 1, class (x));
[q(1), nfev, hmin] = adaptlobstp (f, a , mll, fa , fmll, q0/6, nfev, hmin,
tol, trace, varargin{:});
[q(2), nfev, hmin] = adaptlobstp (f, mll, ml , fmll, fml , q0/6, nfev, hmin,
tol, trace, varargin{:});
[q(3), nfev, hmin] = adaptlobstp (f, ml , m , fml , fm , q0/6, nfev, hmin,
tol, trace, varargin{:});
[q(4), nfev, hmin] = adaptlobstp (f, m , mr , fm , fmr , q0/6, nfev, hmin,
tol, trace, varargin{:});
[q(5), nfev, hmin] = adaptlobstp (f, mr , mrr, fmr , fmrr, q0/6, nfev, hmin,
tol, trace, varargin{:});
[q(6), nfev, hmin] = adaptlobstp (f, mrr, b , fmrr, fb , q0/6, nfev, hmin,
tol, trace, varargin{:});
q = sum (q);
endif
endfunction
## basic functionality
%!assert (quadl (@(x) sin (x), 0, pi), 2, 1e-6)
## the values here are very high so it may be unavoidable that this fails
%!assert (quadl (@(x) sin (3*x).*cosh (x).*sinh (x),10,15, 1e-3),
%! 2.588424538641647e+10, 1e-3)
## extra parameters
%!assert (quadl (@(x,a,b) sin (a + b*x), 0, 1, [], [], 2, 3),
%! cos (2)/3 - cos (5)/3, 1e-6)
## test different tolerances.
%!test
%! [q, nfev1] = quadl (@(x) sin (2 + 3*x).^2, 0, 10, 0.5, []);
%! assert (q, (60 + sin (4) - sin (64))/12, 0.5);
%! [q, nfev2] = quadl (@(x) sin (2 + 3*x).^2, 0, 10, 0.1, []);
%! assert (q, (60 + sin (4) - sin (64))/12, 0.1);
%! assert (nfev2 > nfev1);
%!test # test single input/output
%! assert (class (quadl (@sin, 0, 1)), "double");
%! assert (class (quadl (@sin, single (0), 1)), "single");
%! assert (class (quadl (@sin, 0, single (1))), "single");
## Test input validation
%!error <Invalid call> quadl ()
%!error <Invalid call> quadl (@sin)
%!error <Invalid call> quadl (@sin,1)
%!error <TOL must be a scalar> quadl (@sin,0,1, ones (2,2))
%!error <TOL must be .* .=0> quadl (@sin,0,1, -1)
|