1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
########################################################################
##
## Copyright (C) 2008-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{q} =} quadv (@var{f}, @var{a}, @var{b})
## @deftypefnx {} {@var{q} =} quadv (@var{f}, @var{a}, @var{b}, @var{tol})
## @deftypefnx {} {@var{q} =} quadv (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace})
## @deftypefnx {} {@var{q} =} quadv (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace}, @var{p1}, @var{p2}, @dots{})
## @deftypefnx {} {[@var{q}, @var{nfev}] =} quadv (@dots{})
##
## Numerically evaluate the integral of @var{f} from @var{a} to @var{b}
## using an adaptive Simpson's rule.
##
## @var{f} is a function handle, inline function, or string containing the name
## of the function to evaluate. @code{quadv} is a vectorized version of
## @code{quad} and the function defined by @var{f} must accept a scalar or
## vector as input and return a scalar, vector, or array as output.
##
## @var{a} and @var{b} are the lower and upper limits of integration. Both
## limits must be finite.
##
## The optional argument @var{tol} defines the absolute tolerance used to stop
## the adaptation procedure. The default value is 1e-6.
##
## The algorithm used by @code{quadv} involves recursively subdividing the
## integration interval and applying Simpson's rule on each subinterval.
## If @var{trace} is true then after computing each of these partial
## integrals display: (1) the total number of function evaluations,
## (2) the left end of the subinterval, (3) the length of the subinterval,
## (4) the approximation of the integral over the subinterval.
##
## Additional arguments @var{p1}, etc., are passed directly to the function
## @var{f}. To use default values for @var{tol} and @var{trace}, one may pass
## empty matrices ([]).
##
## The result of the integration is returned in @var{q}.
##
## The optional output @var{nfev} indicates the total number of function
## evaluations performed.
##
## Note: @code{quadv} is written in Octave's scripting language and can be
## used recursively in @code{dblquad} and @code{triplequad}, unlike the
## @code{quad} function.
## @seealso{quad, quadl, quadgk, quadcc, trapz, dblquad, triplequad, integral,
## integral2, integral3}
## @end deftypefn
## Algorithm: See https://en.wikipedia.org/wiki/Adaptive_Simpson%27s_method
## for basic explanation. See NOTEs and FIXME for Octave modifications.
function [q, nfev] = quadv (f, a, b, tol = [], trace = false, varargin)
if (nargin < 3)
print_usage ();
endif
if (isa (a, "single") || isa (b, "single"))
eps = eps ("single");
else
eps = eps ("double");
endif
if (isempty (tol))
tol = 1e-6;
elseif (! isscalar (tol) || tol < 0)
error ("quadv: TOL must be a scalar >=0");
endif
if (trace)
## Print column headers once above trace display.
printf (" nfev a (b - a) q_interval\n");
endif
## NOTE: Split the interval into 3 parts which avoids problems with periodic
## functions when a, b, and (a + b)/2 fall on boundaries such as 0, 2*pi.
## For compatibility with Matlab, split in to two equal size regions on the
## left and right, and one larger central region.
alpha = 0.27158; # factor for region 1 & region 3 size (~27%)
b1 = a + alpha * (b - a);
b2 = b - alpha * (b - a);
c1 = (a + b1) / 2;
c2 = (a + b) / 2;
c3 = (b2 + b) / 2;
fa = feval (f, a, varargin{:});
fc1 = feval (f, c1, varargin{:});
fb1 = feval (f, b1, varargin{:});
fc2 = feval (f, c2, varargin{:});
fb2 = feval (f, b2, varargin{:});
fc3 = feval (f, c3, varargin{:});
fb = feval (f, b, varargin{:});
nfev = 7;
## NOTE: If there are edge singularities, move edge point by eps*(b-a) as
## discussed in Shampine paper used to implement quadgk.
if (any (isinf (fa(:))))
fa = feval (f, a + eps * (b-a), varargin{:});
nfev++;
endif
if (any (isinf (fb(:))))
fb = feval (f, b - eps * (b-a), varargin{:});
nfev++;
endif
## Region 1
h = (b1 - a);
q1 = h / 6 * (fa + 4*fc1 + fb1);
[q1, nfev, hmin1] = simpsonstp (f, a, b1, c1, fa, fb1, fc1, q1, tol,
nfev, abs (h), trace, varargin{:});
## Region 2
h = (b2 - b1);
q2 = h / 6 * (fb1 + 4*fc2 + fb2);
[q2, nfev, hmin2] = simpsonstp (f, b1, b2, c2, fb1, fb2, fc2, q2, tol,
nfev, abs (h), trace, varargin{:});
## Region 3
h = (b - b2);
q3 = h / 6 * (fb2 + 4*fc3 + fb);
[q3, nfev, hmin3] = simpsonstp (f, b2, b, c3, fb2, fb, fc3, q3, tol,
nfev, abs (h), trace, varargin{:});
## Total integral over all 3 regions and verify results
q = q1 + q2 + q3;
hmin = min ([hmin1, hmin2, hmin3]);
if (nfev > 10_000)
warning ("quadv: maximum iteration count reached -- possible singular integral");
elseif (any (! isfinite (q(:))))
warning ("quadv: infinite or NaN function evaluations were returned");
elseif (hmin < (b - a) * eps)
warning ("quadv: minimum step size reached -- possible singular integral");
endif
endfunction
function [q, nfev, hmin] = simpsonstp (f, a, b, c, fa, fb, fc, q0, tol,
nfev, hmin, trace, varargin)
if (nfev > 10_000) # stop endless recursion
q = q0;
return;
endif
d = (a + c) / 2;
e = (c + b) / 2;
fd = feval (f, d, varargin{:});
fe = feval (f, e, varargin{:});
nfev += 2;
q1 = (c - a) / 6 * (fa + 4*fd + fc);
q2 = (b - c) / 6 * (fc + 4*fe + fb);
q = q1 + q2;
if (abs (a - c) < hmin)
hmin = abs (a - c);
endif
delta = q - q0; # error term between new estimate and old estimate
if (trace)
printf ("%5d %#14.11g %16.10e %-16.11g\n",
nfev, a, b-a, q + delta/15);
endif
## NOTE: Not vectorizing q-q0 in the norm provides a more rigid criterion
## for matrix-valued functions.
if (norm (delta, Inf) > 15*tol)
## FIXME: To keep sum of sub-interval integrands within overall tolerance
## each bisection interval should use tol/2. However, Matlab does not
## do this, and it would also profoundly increase the number of function
## evaluations required.
[q1, nfev, hmin] = simpsonstp (f, a, c, d, fa, fc, fd, q1, tol,
nfev, hmin, trace, varargin{:});
[q2, nfev, hmin] = simpsonstp (f, c, b, e, fc, fb, fe, q2, tol,
nfev, hmin, trace, varargin{:});
q = q1 + q2;
else
q += delta / 15; # NOTE: Richardson extrapolation correction
endif
endfunction
%!assert (quadv (@sin, 0, 2*pi), 0, 1e-6)
%!assert (quadv (@sin, 0, pi), 2, 1e-6)
## Test weak singularities at the edge
%!assert (quadv (@(x) 1 ./ sqrt (x), 0, 1), 2, 15*1e-6)
## Test vector-valued functions
%!assert (quadv (@(x) [(sin (x)), (sin (2 * x))], 0, pi), [2, 0], 1e-6)
## Test matrix-valued functions
%!assert (quadv (@(x) [ x,x,x; x,1./sqrt(x),x; x,x,x ], 0, 1),
%! [0.5,0.5,0.5; 0.5,2,0.5; 0.5,0.5,0.5], 15*1e-6);
## Test periodic function
%!assert <*57603> (quadv (@(t) sin (t) .^ 2, 0, 8*pi), 4*pi, 1e-6)
## Test input validation
%!error <Invalid call> quadv ()
%!error <Invalid call> quadv (@sin)
%!error <Invalid call> quadv (@sin,1)
%!error <TOL must be a scalar> quadv (@sin,0,1, ones (2,2))
%!error <TOL must be .* .=0> quadv (@sin,0,1, -1)
|