File: quadv.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (230 lines) | stat: -rw-r--r-- 8,269 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
########################################################################
##
## Copyright (C) 2008-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{q} =} quadv (@var{f}, @var{a}, @var{b})
## @deftypefnx {} {@var{q} =} quadv (@var{f}, @var{a}, @var{b}, @var{tol})
## @deftypefnx {} {@var{q} =} quadv (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace})
## @deftypefnx {} {@var{q} =} quadv (@var{f}, @var{a}, @var{b}, @var{tol}, @var{trace}, @var{p1}, @var{p2}, @dots{})
## @deftypefnx {} {[@var{q}, @var{nfev}] =} quadv (@dots{})
##
## Numerically evaluate the integral of @var{f} from @var{a} to @var{b}
## using an adaptive Simpson's rule.
##
## @var{f} is a function handle, inline function, or string containing the name
## of the function to evaluate.  @code{quadv} is a vectorized version of
## @code{quad} and the function defined by @var{f} must accept a scalar or
## vector as input and return a scalar, vector, or array as output.
##
## @var{a} and @var{b} are the lower and upper limits of integration.  Both
## limits must be finite.
##
## The optional argument @var{tol} defines the absolute tolerance used to stop
## the adaptation procedure.  The default value is 1e-6.
##
## The algorithm used by @code{quadv} involves recursively subdividing the
## integration interval and applying Simpson's rule on each subinterval.
## If @var{trace} is true then after computing each of these partial
## integrals display: (1) the total number of function evaluations,
## (2) the left end of the subinterval, (3) the length of the subinterval,
## (4) the approximation of the integral over the subinterval.
##
## Additional arguments @var{p1}, etc., are passed directly to the function
## @var{f}.  To use default values for @var{tol} and @var{trace}, one may pass
## empty matrices ([]).
##
## The result of the integration is returned in @var{q}.
##
## The optional output @var{nfev} indicates the total number of function
## evaluations performed.
##
## Note: @code{quadv} is written in Octave's scripting language and can be
## used recursively in @code{dblquad} and @code{triplequad}, unlike the
## @code{quad} function.
## @seealso{quad, quadl, quadgk, quadcc, trapz, dblquad, triplequad, integral,
##          integral2, integral3}
## @end deftypefn

## Algorithm: See https://en.wikipedia.org/wiki/Adaptive_Simpson%27s_method
## for basic explanation.  See NOTEs and FIXME for Octave modifications.

function [q, nfev] = quadv (f, a, b, tol = [], trace = false, varargin)

  if (nargin < 3)
    print_usage ();
  endif

  if (isa (a, "single") || isa (b, "single"))
    eps = eps ("single");
  else
    eps = eps ("double");
  endif
  if (isempty (tol))
    tol = 1e-6;
  elseif (! isscalar (tol) || tol < 0)
    error ("quadv: TOL must be a scalar >=0");
  endif

  if (trace)
    ## Print column headers once above trace display.
    printf ("  nfev          a            (b - a)         q_interval\n");
  endif

  ## NOTE: Split the interval into 3 parts which avoids problems with periodic
  ## functions when a, b, and (a + b)/2 fall on boundaries such as 0, 2*pi.
  ## For compatibility with Matlab, split in to two equal size regions on the
  ## left and right, and one larger central region.
  alpha = 0.27158;   # factor for region 1 & region 3 size (~27%)
  b1 = a + alpha * (b - a);
  b2 = b - alpha * (b - a);
  c1 = (a + b1) / 2;
  c2 = (a + b)  / 2;
  c3 = (b2 + b) / 2;

  fa  = feval (f, a,  varargin{:});
  fc1 = feval (f, c1, varargin{:});
  fb1 = feval (f, b1, varargin{:});
  fc2 = feval (f, c2, varargin{:});
  fb2 = feval (f, b2, varargin{:});
  fc3 = feval (f, c3, varargin{:});
  fb  = feval (f, b,  varargin{:});
  nfev = 7;

  ## NOTE: If there are edge singularities, move edge point by eps*(b-a) as
  ## discussed in Shampine paper used to implement quadgk.
  if (any (isinf (fa(:))))
    fa = feval (f, a + eps * (b-a), varargin{:});
    nfev++;
  endif
  if (any (isinf (fb(:))))
    fb = feval (f, b - eps * (b-a), varargin{:});
    nfev++;
  endif

  ## Region 1
  h = (b1 - a);
  q1 = h / 6 * (fa + 4*fc1 + fb1);

  [q1, nfev, hmin1] = simpsonstp (f, a, b1, c1, fa, fb1, fc1, q1, tol,
                                  nfev, abs (h), trace, varargin{:});

  ## Region 2
  h = (b2 - b1);
  q2 = h / 6 * (fb1 + 4*fc2 + fb2);

  [q2, nfev, hmin2] = simpsonstp (f, b1, b2, c2, fb1, fb2, fc2, q2, tol,
                                  nfev, abs (h), trace, varargin{:});

  ## Region 3
  h = (b - b2);
  q3 = h / 6 * (fb2 + 4*fc3 + fb);

  [q3, nfev, hmin3] = simpsonstp (f, b2, b, c3, fb2, fb, fc3, q3, tol,
                                  nfev, abs (h), trace, varargin{:});

  ## Total integral over all 3 regions and verify results
  q = q1 + q2 + q3;

  hmin = min ([hmin1, hmin2, hmin3]);

  if (nfev > 10_000)
    warning ("quadv: maximum iteration count reached -- possible singular integral");
  elseif (any (! isfinite (q(:))))
    warning ("quadv: infinite or NaN function evaluations were returned");
  elseif (hmin < (b - a) * eps)
    warning ("quadv: minimum step size reached -- possible singular integral");
  endif

endfunction

function [q, nfev, hmin] = simpsonstp (f, a, b, c, fa, fb, fc, q0, tol,
                                       nfev, hmin, trace, varargin)

  if (nfev > 10_000)   # stop endless recursion
    q = q0;
    return;
  endif

  d = (a + c) / 2;
  e = (c + b) / 2;
  fd = feval (f, d, varargin{:});
  fe = feval (f, e, varargin{:});
  nfev += 2;
  q1 = (c - a) / 6 * (fa + 4*fd + fc);
  q2 = (b - c) / 6 * (fc + 4*fe + fb);
  q = q1 + q2;

  if (abs (a - c) < hmin)
    hmin = abs (a - c);
  endif

  delta = q - q0;   # error term between new estimate and old estimate

  if (trace)
    printf ("%5d   %#14.11g   %16.10e   %-16.11g\n",
            nfev,  a,         b-a,      q + delta/15);
  endif

  ## NOTE: Not vectorizing q-q0 in the norm provides a more rigid criterion
  ##       for matrix-valued functions.
  if (norm (delta, Inf) > 15*tol)
    ## FIXME: To keep sum of sub-interval integrands within overall tolerance
    ## each bisection interval should use tol/2.  However, Matlab does not
    ## do this, and it would also profoundly increase the number of function
    ## evaluations required.
    [q1, nfev, hmin] = simpsonstp (f, a, c, d, fa, fc, fd, q1, tol,
                                   nfev, hmin, trace, varargin{:});
    [q2, nfev, hmin] = simpsonstp (f, c, b, e, fc, fb, fe, q2, tol,
                                   nfev, hmin, trace, varargin{:});
    q = q1 + q2;
  else
    q += delta / 15;   # NOTE: Richardson extrapolation correction
  endif

endfunction


%!assert (quadv (@sin, 0, 2*pi), 0, 1e-6)
%!assert (quadv (@sin, 0, pi), 2, 1e-6)

## Test weak singularities at the edge
%!assert (quadv (@(x) 1 ./ sqrt (x), 0, 1), 2, 15*1e-6)

## Test vector-valued functions
%!assert (quadv (@(x) [(sin (x)), (sin (2 * x))], 0, pi), [2, 0], 1e-6)

## Test matrix-valued functions
%!assert (quadv (@(x) [ x,x,x; x,1./sqrt(x),x; x,x,x ], 0, 1),
%!        [0.5,0.5,0.5; 0.5,2,0.5; 0.5,0.5,0.5], 15*1e-6);

## Test periodic function
%!assert <*57603> (quadv (@(t) sin (t) .^ 2, 0, 8*pi), 4*pi, 1e-6)

## Test input validation
%!error <Invalid call> quadv ()
%!error <Invalid call> quadv (@sin)
%!error <Invalid call> quadv (@sin,1)
%!error <TOL must be a scalar> quadv (@sin,0,1, ones (2,2))
%!error <TOL must be .* .=0> quadv (@sin,0,1, -1)