1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
########################################################################
##
## Copyright (C) 2001-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{s} =} rat (@var{x})
## @deftypefnx {} {@var{s} =} rat (@var{x}, @var{tol})
## @deftypefnx {} {[@var{n}, @var{d}] =} rat (@dots{})
##
## Find a rational approximation of @var{x} to within the tolerance defined by
## @var{tol}.
##
## If unspecified, the default tolerance is @code{1e-6 * norm (@var{x}(:), 1)}.
##
## When called with one output argument, return a string containing a
## continued fraction expansion (multiple terms).
##
## When called with two output arguments, return numeric matrices for the
## numerator and denominator of a fractional representation of @var{x} such
## that @code{@var{x} = @var{n} ./ @var{d}}.
##
## For example:
##
## @example
## @group
## s = rat (pi)
## @result{} s = 3 + 1/(7 + 1/16)
##
## [n, d] = rat (pi)
## @result{} n = 355
## @result{} d = 113
##
## n / d - pi
## @result{} 0.00000026676
## @end group
## @end example
##
## Programming Note: With one output @code{rat} produces a string which is a
## continued fraction expansion. To produce a string which is a simple
## fraction (one numerator, one denominator) use @code{rats}.
##
## @seealso{rats, format}
## @end deftypefn
function [n, d] = rat (x, tol)
if (nargin < 1)
print_usage ();
endif
if (! isfloat (x))
error ("rat: X must be a single or double array");
endif
## FIXME: This test should be removed when complex support is added.
## See bug #55198.
if (iscomplex (x))
error ("rat: X must be a real, not complex, array");
endif
y = x(:);
## Replace Inf with 0 while calculating ratios.
inf_idx = isinf (x);
y(inf_idx(:)) = 0;
if (nargin == 1)
## default norm
tol = 1e-6 * norm (y, 1);
else
if (! (isscalar (tol) && isnumeric (tol) && tol > 0))
error ("rat: TOL must be a numeric scalar > 0");
endif
endif
## First step in the approximation is the integer portion
## First element in the continued fraction.
n = round (y);
d = ones (size (y));
frac = y - n;
lastn = ones (size (y));
lastd = zeros (size (y));
nsz = numel (y);
steps = zeros ([nsz, 0]);
## Grab new factors until all continued fractions converge.
while (1)
## Determine which fractions have not yet converged.
idx = find (y != 0 & abs (y - n./d) >= tol);
if (isempty (idx))
if (isempty (steps))
steps = NaN (nsz, 1);
endif
break;
endif
## Grab the next step in the continued fraction.
flip = 1 ./ frac(idx);
## Next element in the continued fraction.
step = round (flip);
if (nargout < 2)
tsteps = NaN (nsz, 1);
tsteps(idx) = step;
steps = [steps, tsteps];
endif
frac(idx) = flip - step;
## Update the numerator/denominator.
savedn = n;
savedd = d;
n(idx) = n(idx).*step + lastn(idx);
d(idx) = d(idx).*step + lastd(idx);
lastn = savedn;
lastd = savedd;
endwhile
if (nargout <= 1)
## string output
n = "";
nsteps = columns (steps);
## Loop over all values in array
for i = 1:nsz
if (inf_idx(i))
s = ifelse (x(i) > 0, "Inf", "-Inf");
elseif (y(i) == 0)
s = "0";
else
## Create partial fraction expansion of one value
s = [int2str(y(i)), " "];
j = 1;
while (true)
step = steps(i, j++);
if (isnan (step))
break;
endif
if (j > nsteps || isnan (steps(i, j)))
if (step < 0)
s = [s(1:end-1), " + 1/(", int2str(step), ")"];
else
s = [s(1:end-1), " + 1/", int2str(step)];
endif
break;
else
s = [s(1:end-1), " + 1/(", int2str(step), ")"];
endif
endwhile
s = [s, repmat(")", 1, j-2)];
endif
## Append result to output
n_nc = columns (n);
s_nc = columns (s);
if (n_nc > s_nc)
s(:, s_nc+1:n_nc) = " ";
elseif (s_nc > n_nc && n_nc != 0)
n(:, n_nc+1:s_nc) = " ";
endif
n = cat (1, n, s);
endfor
else
## numerator, denominator output
## Move the minus sign to the numerator.
n .*= sign (d);
d = abs (d);
## Return the same shape as the input.
n = reshape (n, size (x));
d = reshape (d, size (x));
## Use 1/0 for Inf.
n(inf_idx) = sign (x(inf_idx));
d(inf_idx) = 0;
endif
endfunction
%!assert (rat (pi), "3 + 1/(7 + 1/16)")
%!assert (rat (pi, 1e-2), "3 + 1/7")
## Test exceptional values
%!assert (rat (0), "0")
%!assert (rat (Inf), "Inf")
%!assert (rat (-Inf), "-Inf")
%!test
%! [n, d] = rat ([0.5, 0.3, 1/3]);
%! assert (n, [1, 3, 1]);
%! assert (d, [2, 10, 3]);
## Test exceptional values
%!test
%! [n, d] = rat ([Inf, 0, -Inf]);
%! assert (n, [1, 0, -1]);
%! assert (d, [0, 1, 0]);
%!assert <*43374> (eval (rat (0.75)), [0.75])
## Test input validation
%!error <Invalid call> rat ()
%!error <X must be a single or double array> rat (int8 (3))
%!error <X must be a real, not complex, array> rat (1+1i)
%!error <TOL must be a numeric scalar> rat (1, "a")
%!error <TOL must be a numeric scalar> rat (1, [1 2])
%!error <TOL must be a numeric scalar . 0> rat (1, -1)
|