1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
|
########################################################################
##
## Copyright (C) 2015-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{xxx} =} repelem (@var{x}, @var{R})
## @deftypefnx {} {@var{xxx} =} repelem (@var{x}, @var{R_1}, @dots{}, @var{R_n})
## Construct an array of repeated elements from @var{x} and repeat
## instructions @var{R_1}, @dots{}.
##
## @var{x} must be a scalar, vector, or N-dimensional array.
##
## A repeat instruction @var{R_j} must either be a scalar or a vector. If the
## instruction is a scalar then each component of @var{x} in dimension @var{j}
## is repeated @var{R_j} times. If the instruction is a vector then it must
## have the same number of elements as the corresponding dimension @var{j} of
## @var{x}. In this case, the @var{k}th component of dimension @var{j} is
## repeated @code{@var{R_j}(@var{k})} times.
##
## If @var{x} is a scalar or vector then @code{repelem} may be called with just
## a single repeat instruction @var{R} and @code{repelem} will return a vector
## with the same orientation as the input.
##
## If @var{x} is a matrix then at least two @var{R_j}s must be specified.
##
## Note: Using @code{repelem} with a vector @var{x} and a vector for @var{R_j}
## is equivalent to Run Length Decoding.
##
## Examples:
##
## @example
## @group
## A = [1 2 3 4 5];
## B = [2 1 0 1 2];
## repelem (A, B)
## @result{} 1 1 2 4 5 5
## @end group
## @end example
##
## @example
## @group
## A = magic (3)
## @result{} A =
## 8 1 6
## 3 5 7
## 4 9 2
## B1 = [1 2 3];
## B2 = 2;
## repelem (A, B1, B2)
## @result{} 8 8 1 1 6 6
## 3 3 5 5 7 7
## 3 3 5 5 7 7
## 4 4 9 9 2 2
## 4 4 9 9 2 2
## 4 4 9 9 2 2
## @end group
## @end example
##
## More @var{R_j} may be specified than the number of dimensions of @var{x}.
## Any excess @var{R_j} must be scalars (because @var{x}'s size in those
## dimensions is only 1), and @var{x} will be replicated in those dimensions
## accordingly.
##
## @example
## @group
## A = [1 2 3 4 5];
## B1 = 2;
## B2 = [2 1 3 0 2];
## B3 = 3;
## repelem (A, B1, B2, B3)
## @result{} ans(:,:,1) =
## 1 1 2 3 3 3 5 5
## 1 1 2 3 3 3 5 5
##
## ans(:,:,2) =
##
## 1 1 2 3 3 3 5 5
## 1 1 2 3 3 3 5 5
##
## ans(:,:,3) =
## 1 1 2 3 3 3 5 5
## 1 1 2 3 3 3 5 5
## @end group
## @end example
##
## @var{R_j} must be specified in order. A placeholder of 1 may be used for
## dimensions which do not need replication.
##
## @example
## @group
## repelem ([-1, 0; 0, 1], 1, 2, 1, 2)
## @result{} ans(:,:,1,1) =
## -1 -1 0 0
## 0 0 1 1
##
## ans(:,:,1,2) =
## -1 -1 0 0
## 0 0 1 1
## @end group
## @end example
##
## If fewer @var{R_j} are given than the number of dimensions in @var{x},
## @code{repelem} will assume @var{R_j} is 1 for those dimensions.
##
## @example
## A = cat (3, [-1 0; 0 1], [-1 0; 0 1])
## @result{} ans(:,:,1) =
## -1 0
## 0 1
##
## ans(:,:,2) =
## -1 0
## 0 1
##
## repelem (A,2,3)
## @result{} ans(:,:,1) =
## -1 -1 -1 0 0 0
## -1 -1 -1 0 0 0
## 0 0 0 1 1 1
## 0 0 0 1 1 1
##
## ans(:,:,2) =
## -1 -1 -1 0 0 0
## -1 -1 -1 0 0 0
## 0 0 0 1 1 1
## 0 0 0 1 1 1
## @end example
##
## @code{repelem} preserves the class of @var{x}, and works with strings,
## cell arrays, NA, and NAN inputs. If any @var{R_j} is 0 the output will
## be an empty array.
##
## @example
## @group
## repelem ("Octave", 2, 3)
## @result{} OOOccctttaaavvveee
## OOOccctttaaavvveee
##
## repelem ([1 2 3; 1 2 3], 2, 0)
## @result{} [](4x0)
## @end group
## @end example
##
## @seealso{cat, kron, repmat}
## @end deftypefn
## Author: Markus Bergholz <markuman@gmail.com>
## Author: Nicholas R. Jankowski <jankowski.nicholas@gmail.com>
## As a U.S. government employee, Nicholas R. Jankowski makes no claim
## of copyright.
## The prepareIdx routine is Copyright (C) 2015 Peter John Acklam
## <pjacklam@gmail.com>, used with permission.
function retval = repelem (x, varargin)
if (nargin < 2)
print_usage ();
elseif (nargin == 2)
R = varargin{1};
if (isscalar (R))
if (! isvector (x))
error (["repelem: %dD Array requires %d or more input " ...
"arguments, but only %d given"], ...
ndims (x), ndims (x) + 1, nargin);
endif
if (isrow (x))
## element values repeated R times in a scalar or row vector
retval = x(ones (R, 1), :)(:).';
else
## element values repeated R times in a col vector
retval = x.'(ones (R, 1), :)(:);
endif
elseif (isvector (x) && isvector (R))
## vector x with vector repeat.
if (numel (R) != numel (x))
error (["repelem: R1 must either be scalar or have the same " ...
"number of elements as the vector to be replicated"]);
endif
## Basic run-length decoding in function prepareIdx returns
## idx2 as a row vector of element indices in the right positions.
idx2 = prepareIdx (R);
## Fill with element values, direction matches element.
retval = x(idx2);
else # catch any arrays passed to x or varargin with nargin==2
error (["repelem: when called with only two inputs they must be " ...
"either scalars or vectors, not %s and %s."],
typeinfo (x), typeinfo (R));
endif
elseif (nargin == 3) # special optimized case for 2-D (matrices)
## Input Validation
xsz = size (x);
vector_r = ! (cellfun (@numel, varargin) == 1);
## 1. Check that all varargin are either scalars or vectors, not arrays.
## isvector returns true for scalars so one test captures both inputs.
if (! (isvector (varargin{1}) && (isvector (varargin{2}))))
error ("repelem: R1 and R2 must be scalars or vectors");
## 2. check that any repeat vectors have the right length.
elseif (any (cellfun (@numel, varargin(vector_r)) != xsz(vector_r)))
error (["repelem: R_j vectors must have the same number of elements " ...
"as the size of dimension j of X"]);
endif
## Create index arrays to pass to element.
## (It is no slower to call prepareIdx than to check and do scalars
## directly.)
idx1 = prepareIdx (varargin{1}, xsz(1));
idx2 = prepareIdx (varargin{2}, xsz(2));
if (issparse (x))
retval = x(idx1, idx2);
else
## The ":" at the end takes care of any x dimensions > 2.
retval = x(idx1, idx2, :);
endif
else # (nargin > 3)
## Input Validation
xsz = size (x);
n_xdims = numel (xsz);
vector_r = ! (cellfun (@numel, varargin) == 1);
## 1. Check that all repeats are scalars or vectors
## (isvector gives true for scalars);
if (! all (cellfun (@isvector, varargin(vector_r))))
error ("repelem: R_j must all be scalars or vectors");
## 2. Catch any vectors thrown at trailing singletons,
## which should only have scalars;
elseif (find (vector_r, 1, "last") > n_xdims)
error ("repelem: R_j for trailing singleton dimensions must be scalar");
## 3. Check that the ones that are vectors have the right length.
elseif (any (cellfun (@numel, varargin(vector_r)) != xsz(vector_r)))
error (["repelem: R_j vectors must have the same number of elements " ...
"as the size of dimension j of X"]);
endif
n_rpts = nargin - 1;
dims_with_vectors_and_scalars = min (n_xdims, n_rpts);
## Preallocate idx which will contain index array to be put into element.
idx = cell (1, n_rpts);
## Use prepareIdx() to fill indices for dimensions that could be
## a scalar or a vector.
for i = 1 : dims_with_vectors_and_scalars
idx(i) = prepareIdx (varargin{i}, xsz(i));
endfor
## If there are more varargin inputs than x dimensions, then input tests
## have verified that they are just scalars, so add [1 1 1 1 1 ... 1] to
## those dims to perform concatenation along those dims.
if (n_rpts > n_xdims)
for i = n_xdims + (1 : (n_rpts - n_xdims))
idx(i) = ones (1, varargin{i});
endfor
endif
## Use completed idx to specify repetition of x values in all dimensions.
## The trailing ":" will take care of cases where n_xdims > n_rpts.
retval = x(idx{:}, :);
endif
endfunction
## Return a row vector of indices prepared for replicating.
function idx = prepareIdx (v, n)
if (isscalar (v))
## will always return row vector
idx = [1:n](ones (v, 1), :)(:).';
else
## This works for a row or column vector.
## Get ending position for each element item.
idx_temp = cumsum (v);
## Set starting position of each element to 1.
idx(idx_temp + 1) = 1;
## Set starting position of each element to 1.
idx(1) = 1;
## Row vector with proper length for output
idx = idx(1:idx_temp(end));
## with prepared index
idx = (find (v != 0))(cumsum (idx));
endif
endfunction
## tests for help examples
%!assert (repelem ([1 2 3 4 5], [2 1 0 1 2]), [1 1 2 4 5 5])
%!assert (repelem (magic(3), [1 2 3],2), ...
%! [8 8 1 1 6 6;3 3 5 5 7 7;3 3 5 5 7 7;4 4 9 9 2 2;4 4 9 9 2 2;4 4 9 9 2 2])
%!assert (repelem ([1 2 3 4 5],2,[2 1 3 0 2],3),repmat([1 1 2 3 3 3 5 5],2,1,3))
%!assert (repelem ([-1 0;0 1],1,2,1,2), repmat([-1 -1 0 0; 0 0 1 1],1,1,1,2))
%!assert (repelem (cat(3,[-1 0 ; 0 1],[-1 0 ; 0 1]),2,3), ...
%! repmat([-1 -1 -1 0 0 0;-1 -1 -1 0 0 0;0 0 0 1 1 1;0 0 0 1 1 1],1,1,2))
%!assert (repelem ("Octave", 2,3), ["OOOccctttaaavvveee";"OOOccctttaaavvveee"])
## test complex vectors are not Hermitian conjugated
%!assert (repelem ([i, -i], 2), [i, i, -i, -i])
%!assert (repelem ([i; -i], 2), [i; i; -i; -i])
## nargin == 2 tests
%!assert (repelem (2, 6), [2 2 2 2 2 2])
%!assert (repelem ([-1 0 1], 2), [-1 -1 0 0 1 1])
%!assert (repelem ([-1 0 1]', 2), [-1; -1; 0; 0; 1; 1])
%!assert (repelem ([-1 0 1], [1 2 1]), [-1 0 0 1])
%!assert (repelem ([-1 0 1]', [1 2 1]), [-1; 0; 0; 1])
%!assert (repelem ([1 2 3 4 5]', [2 1 0 1 2]), [1 1 2 4 5 5]')
## nargin == 3 tests
%!assert (repelem ([1 0;0 -1], 2, 3),
%! [1 1 1 0 0 0;1 1 1 0 0 0;0 0 0 -1 -1 -1;0 0 0 -1 -1 -1])
%!assert (repelem ([1 0; 0 -1], 1,[3 2]), [1 1 1 0 0;0 0 0 -1 -1])
%!assert (repelem ([1 0; 0 -1], 2,[3 2]),
%! [1 1 1 0 0;1 1 1 0 0;0 0 0 -1 -1;0 0 0 -1 -1])
%!assert (repelem (cat(3,[1 0; 0 -1],[1 0;0 -1]), 1,[3 2]),
%! repmat([1 1 1 0 0 ; 0 0 0 -1 -1],1,1,2))
%!assert (repelem ([1 0; 0 -1], [3 2], 1), [1 0;1 0;1 0;0 -1;0 -1])
%!assert (repelem ([1 0; 0 -1], [3 2], 2),
%! [1 1 0 0;1 1 0 0;1 1 0 0;0 0 -1 -1;0 0 -1 -1])
%!assert (repelem ([1 0; 0 -1], [2 3] ,[3 2]),
%! [1 1 1 0 0;1 1 1 0 0;0 0 0 -1 -1;0 0 0 -1 -1;0 0 0 -1 -1])
%!assert (repelem (cat(3,[1 1 1 0;0 1 0 0],[1 1 1 1;0 0 0 1],[1 0 0 1;1 1 0 1]),
%! 2, 3),
%! cat (3,[1 1 1 1 1 1 1 1 1 0 0 0
%! 1 1 1 1 1 1 1 1 1 0 0 0
%! 0 0 0 1 1 1 0 0 0 0 0 0
%! 0 0 0 1 1 1 0 0 0 0 0 0],
%! [1 1 1 1 1 1 1 1 1 1 1 1
%! 1 1 1 1 1 1 1 1 1 1 1 1
%! 0 0 0 0 0 0 0 0 0 1 1 1
%! 0 0 0 0 0 0 0 0 0 1 1 1],
%! [1 1 1 0 0 0 0 0 0 1 1 1
%! 1 1 1 0 0 0 0 0 0 1 1 1
%! 1 1 1 1 1 1 0 0 0 1 1 1
%! 1 1 1 1 1 1 0 0 0 1 1 1]))
%!assert (repelem (cat(3,[1 1 1 0;0 1 0 0],[1 1 1 1;0 0 0 1],[1 0 0 1;1 1 0 1]),
%! 2, [3 3 3 3]), ...
%! cat (3,[1 1 1 1 1 1 1 1 1 0 0 0
%! 1 1 1 1 1 1 1 1 1 0 0 0
%! 0 0 0 1 1 1 0 0 0 0 0 0
%! 0 0 0 1 1 1 0 0 0 0 0 0], ...
%! [1 1 1 1 1 1 1 1 1 1 1 1
%! 1 1 1 1 1 1 1 1 1 1 1 1
%! 0 0 0 0 0 0 0 0 0 1 1 1
%! 0 0 0 0 0 0 0 0 0 1 1 1], ...
%! [1 1 1 0 0 0 0 0 0 1 1 1
%! 1 1 1 0 0 0 0 0 0 1 1 1
%! 1 1 1 1 1 1 0 0 0 1 1 1
%! 1 1 1 1 1 1 0 0 0 1 1 1]));
%!assert (repelem ([1 2 3 4 5], 2,[2 1 2 0 2]), [1 1 2 3 3 5 5;1 1 2 3 3 5 5])
%
## nargin > 3 tests
%!assert (repelem ([1 0;0 -1], 2, 3, 4), ...
%! cat(3,[1 1 1 0 0 0;1 1 1 0 0 0;0 0 0 -1 -1 -1;0 0 0 -1 -1 -1], ...
%! [1 1 1 0 0 0;1 1 1 0 0 0;0 0 0 -1 -1 -1;0 0 0 -1 -1 -1], ...
%! [1 1 1 0 0 0;1 1 1 0 0 0;0 0 0 -1 -1 -1;0 0 0 -1 -1 -1], ...
%! [1 1 1 0 0 0;1 1 1 0 0 0;0 0 0 -1 -1 -1;0 0 0 -1 -1 -1]))
%!assert (repelem (repmat([-1 0;0 1],1,1,2,3),2,2,2), ...
%! repmat([-1 -1 0 0;-1 -1 0 0;0 0 1 1; 0 0 1 1],1,1,4,3))
%!assert (repelem (repmat([-1 0;0 1],1,1,2,3),[2 2],[2 2],2), ...
%! repmat([-1 -1 0 0;-1 -1 0 0;0 0 1 1; 0 0 1 1],1,1,4,3))
%!assert (repelem (repmat([-1 0;0 1],1,1,2,3),2,2,2,2,2), ...
%! repmat([-1 -1 0 0;-1 -1 0 0;0 0 1 1; 0 0 1 1],1,1,4,6,2))
%!assert (repelem ([1,0,-1;-1,0,1],[2 3],[2 3 4],2), ...
%! cat (3,[ 1 1 0 0 0 -1 -1 -1 -1
%! 1 1 0 0 0 -1 -1 -1 -1
%! -1 -1 0 0 0 1 1 1 1
%! -1 -1 0 0 0 1 1 1 1
%! -1 -1 0 0 0 1 1 1 1], ...
%! [ 1 1 0 0 0 -1 -1 -1 -1
%! 1 1 0 0 0 -1 -1 -1 -1
%! -1 -1 0 0 0 1 1 1 1
%! -1 -1 0 0 0 1 1 1 1
%! -1 -1 0 0 0 1 1 1 1]));
%!assert (repelem ([1 2 3;4 5 6],[0 2],2,2), repmat([4 4 5 5 6 6],2,1,2))
## test with structures
%!test
%! a(2).x = 1;
%! a(2).y = 2;
%! a(1).x = 3;
%! a(1).y = 4;
%! b = repelem (a, 2, [1 3]);
%! assert (size (b) == [2, 4]);
%! assert ([b.y], [4 4 2 2 2 2 2 2]);
## test with cell arrays
%!test
%! assert (repelem ({-1 0 1}, 2), {-1 -1 0 0 1 1});
%! assert (repelem ({-1 0 1}', 2), {-1; -1; 0; 0; 1; 1;});
%! assert (repelem ({1 0;0 -1}, 2, 3),
%! {1 1 1 0 0 0;1 1 1 0 0 0;0 0 0 -1 -1 -1;0 0 0 -1 -1 -1});
%!test <*54275>
%! assert (repelem (11:13, [1 3 0]), [11 12 12 12]);
%!test <*59705>
%! xs = sparse (magic (3));
%! assert (repelem (xs, 1, 2), ...
%! sparse ([8,8,1,1,6,6; 3,3,5,5,7,7; 4,4,9,9,2,2]));
## nargin <= 1 error tests
%!error <Invalid call> repelem ()
%!error <Invalid call> repelem (1)
%!error repelem (5,[])
%!error repelem ([1 2 3 3 2 1])
%!error repelem ([1 2 3; 3 2 1])
## nargin == 2 error tests
%!error repelem ([1 2 3; 3 2 1],[])
%!error repelem ([1 2 3; 3 2 1],2)
%!error repelem ([1 2 3; 3 2 1],2)
%!error repelem ([1 2 3; 3 2 1],[1 2 3])
%!error repelem ([1 2 3; 3 2 1],[1 2 3]')
%!error repelem ([1 2 3; 3 2 1],[1 2 2 1])
%!error repelem ([1 2 3; 3 2 1],[1 2 3;4 5 6])
%!error repelem ([1 2 3 4 5],[1 2 3 4 5;1 2 3 4 5])
## nargin == 3 error tests
%!error repelem ([1 2 3; 3 2 1], 1, [1 2;1 2])
%!error repelem ([1 2 3; 3 2 1], 1, [1 2])
%!error repelem ([1 2 3; 3 2 1], 2, [])
%!error repelem ([1 2 3; 3 2 1], [1 2 3], [1 2 3])
%!error repelem ([1 2 3; 3 2 1], [1 2 3], [1 2 3 4])
%!error repelem ([1 2 3; 3 2 1], [1 2], [1 2 3 4])
## nargin > 3 error tests
%!error repelem ([1 2 3; 3 2 1], 1, [1 2;1 2],1,2,3)
%!error repelem ([1 2 3; 3 2 1], [],1,2,3)
%!error repelem ([1 2 3; 3 2 1], [1 2], [1 2 3],1,2,[1 2;1 2])
%!error repelem ([1 2 3; 3 2 1], [1 2 3], [1 2 3],1,2)
%!error repelem ([1 2 3; 3 2 1], [1 2], [1 2 3 4],1,2)
|