1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
########################################################################
##
## Copyright (C) 2000-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{B} =} repmat (@var{A}, @var{m})
## @deftypefnx {} {@var{B} =} repmat (@var{A}, @var{m}, @var{n})
## @deftypefnx {} {@var{B} =} repmat (@var{A}, @var{m}, @var{n}, @var{p} @dots{})
## @deftypefnx {} {@var{B} =} repmat (@var{A}, [@var{m} @var{n}])
## @deftypefnx {} {@var{B} =} repmat (@var{A}, [@var{m} @var{n} @var{p} @dots{}])
## Repeat matrix or N-D array.
##
## Form a block matrix of size @var{m} by @var{n}, with a copy of matrix
## @var{A} as each element.
##
## If @var{n} is not specified, form an @var{m} by @var{m} block matrix. For
## copying along more than two dimensions, specify the number of times to copy
## across each dimension @var{m}, @var{n}, @var{p}, @dots{}, in a vector in the
## second argument.
##
## @seealso{bsxfun, kron, repelems}
## @end deftypefn
function B = repmat (A, m, varargin)
if (nargin < 2)
print_usage ();
endif
if (nargin == 3)
n = varargin{1};
if (! isempty (m) && isempty (n))
m = m(:).';
n = 1;
elseif (isempty (m) && ! isempty (n))
m = n(:).';
n = 1;
elseif (isempty (m) && isempty (n))
m = n = 1;
else
if (all (size (m) > 1))
m = m(:,1);
if (numel (m) < 3)
n = n(end);
else
n = [];
endif
endif
if (all (size (n) > 1))
n = n(:,1);
endif
m = m(:).';
n = n(:).';
endif
else
if (nargin > 3)
## input check for m and varargin
if (isscalar (m) && all (cellfun ("numel", varargin) == 1))
m = [m varargin{:}];
n = [];
else
error ("repmat: all input arguments must be scalar");
endif
elseif (isempty (m))
m = n = 1;
elseif (isscalar (m))
n = m;
elseif (ndims (m) > 2)
error ("repmat: M has more than 2 dimensions");
elseif (all (size (m) > 1))
m = m(:,1).';
n = [];
else
m = m(:).';
n = [];
endif
endif
idx = [m, n];
if (all (idx < 0))
error ("repmat: invalid dimensions");
else
idx = max (idx, 0);
endif
if (numel (A) == 1)
## optimize the scalar fill case.
if (any (idx == 0))
B = resize (A, idx);
else
B(1:prod (idx)) = A;
B = reshape (B, idx);
endif
elseif (ndims (A) == 2 && length (idx) < 3)
if (issparse (A))
B = kron (ones (idx), A);
else
## indexing is now faster, so we use it rather than kron.
m = rows (A); n = columns (A);
p = idx(1); q = idx(2);
B = reshape (A, m, 1, n, 1);
B = B(:, ones (1, p), :, ones (1, q));
B = reshape (B, m*p, n*q);
endif
else
aidx = size (A);
## ensure matching size
idx(end+1:length (aidx)) = 1;
aidx(end+1:length (idx)) = 1;
## create subscript array
cidx = cell (2, length (aidx));
for i = 1:length (aidx)
cidx{1,i} = ':';
cidx{2,i} = ones (1, idx (i));
endfor
aaidx = aidx;
## add singleton dims
aaidx(2,:) = 1;
A = reshape (A, aaidx(:));
B = reshape (A (cidx{:}), idx .* aidx);
endif
endfunction
## Tests for ML compatibility
%!shared x
%! x = [1 2 3];
%!assert (repmat (x, [3, 1]), repmat (x, 3, []))
%!assert (repmat (x, [3, 1]), repmat (x, [], 3))
%!assert (repmat (x, [1, 3]), repmat (x, [], [1, 3]))
%!assert (repmat (x, [1, 3]), repmat (x, [1, 3], []))
%!assert (repmat (x, [1 3]), repmat (x, [1 3; 3 3]))
%!assert (repmat (x, [1 1 2]), repmat (x, [1 1; 1 3; 2 1]))
%!assert (repmat (x, [1 3; 1 3], [1; 3]), repmat (x, [1 1 3]))
%!assert (repmat (x, [1 1], 4), repmat (x, [1 3; 1 3], [1; 4]))
%!assert (repmat (x, [1 1], 4), repmat (x, [1 3; 1 3], [1 2; 3 4]))
%!assert (repmat (x, [1 1], 4), repmat (x, [1 1 4]))
%!assert (repmat (x, [1 1], 4), repmat (x, 1, [1 4]))
## Test various methods of providing size parameters
%!shared x
%! x = [1 2;3 4];
%!assert (repmat (x, [1 1]), repmat (x, 1))
%!assert (repmat (x, [3 3]), repmat (x, 3))
%!assert (repmat (x, [1 1]), repmat (x, 1, 1))
%!assert (repmat (x, [1 3]), repmat (x, 1, 3))
%!assert (repmat (x, [3 1]), repmat (x, 3, 1))
%!assert (repmat (x, [3 3]), repmat (x, 3, 3))
%!assert (repmat (pi, [1,2,3,4]), repmat (pi, 1,2,3,4))
## Tests for numel==1 case:
%!shared x, r
%! x = [ 65 ];
%! r = kron (ones (2,2), x);
%!assert (r, repmat (x, [2 2]))
%!assert (char (r), repmat (char (x), [2 2]))
%!assert (int8 (r), repmat (int8 (x), [2 2]))
## Tests for ndims==2 case:
%!shared x, r
%! x = [ 65 66 67 ];
%! r = kron (ones (2,2), x);
%!assert (r, repmat (x, [2 2]))
%!assert (char (r), repmat (char (x), [2 2]))
%!assert (int8 (r), repmat (int8 (x), [2 2]))
## Tests for dim>2 case:
%!shared x, r
%! x = [ 65 66 67 ];
%! r = kron (ones (2,2), x);
%! r(:,:,2) = r(:,:,1);
%!assert (r, repmat (x, [2 2 2]))
%!assert (char (r), repmat (char (x), [2 2 2]))
%!assert (int8 (r), repmat (int8 (x), [2 2 2]))
## Test that sparsity is kept
%!assert (sparse (4,4), repmat (sparse (2,2),[2 2]))
%!assert (size (repmat (".", -1, 1)), [0, 1])
%!assert (size (repmat (".", 1, -1)), [1, 0])
%!assert (size (repmat (1, [1, 0])), [1, 0])
%!assert (size (repmat (1, [5, 0])), [5, 0])
%!assert (size (repmat (1, [0, 1])), [0, 1])
%!assert (size (repmat (1, [0, 5])), [0, 5])
%!assert (size (repmat (ones (0, 3), [2 3])), [0 9])
%!assert (size (repmat (ones (0, 0, 3), [2 3])), [0 0 3])
%!shared x
%! x = struct ("a", [], "b", []);
%!assert (size (repmat (x, [1, 0])), [1, 0])
%!assert (size (repmat (x, [5, 0])), [5, 0])
%!assert (size (repmat (x, [0, 1])), [0, 1])
%!assert (size (repmat (x, [0, 5])), [0, 5])
%!assert (size (repmat ({1}, [1, 0])), [1, 0])
%!assert (size (repmat ({1}, [5, 0])), [5, 0])
%!assert (size (repmat ({1}, [0, 1])), [0, 1])
%!assert (size (repmat ({1}, [0, 5])), [0, 5])
%!error size (repmat (".", -1, -1))
|