1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
########################################################################
##
## Copyright (C) 2004-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{B} =} rotdim (@var{A})
## @deftypefnx {} {@var{B} =} rotdim (@var{A}, @var{n})
## @deftypefnx {} {@var{B} =} rotdim (@var{A}, @var{n}, @var{plane})
## Return a copy of @var{A} with the elements rotated counterclockwise in
## 90-degree increments.
##
## The second argument @var{n} is optional, and specifies how many 90-degree
## rotations are to be applied (the default value is 1). Negative values of
## @var{n} rotate the matrix in a clockwise direction.
##
## The third argument is also optional and defines the plane of the rotation.
## If present, @var{plane} is a two element vector containing two different
## valid dimensions of the matrix. When @var{plane} is not given the first two
## non-singleton dimensions are used.
##
## For example,
##
## @example
## @group
## rotdim ([1, 2; 3, 4], -1, [1, 2])
## @result{} 3 1
## 4 2
## @end group
## @end example
##
## @noindent
## rotates the given matrix clockwise by 90 degrees. The following are all
## equivalent statements:
##
## @example
## @group
## rotdim ([1, 2; 3, 4], -1, [1, 2])
## rotdim ([1, 2; 3, 4], 3, [1, 2])
## rotdim ([1, 2; 3, 4], 7, [1, 2])
## @end group
## @end example
## @seealso{rot90, fliplr, flipud, flip}
## @end deftypefn
function B = rotdim (A, n, plane)
if (nargin < 1)
print_usage ();
endif
if (nargin > 1 && ! isempty (n))
if (! isscalar (n) || ! isreal (n) || fix (n) != n)
error ("rotdim: N must be a scalar integer");
endif
else
n = 1;
endif
nd = ndims (A);
sz = size (A);
if (nargin < 3)
if (nd > 2)
## Find the first two non-singleton dimension.
plane = [];
dim = 0;
while (dim < nd)
dim += 1;
if (sz (dim) != 1)
plane = [plane, dim];
if (length (plane) == 2)
break;
endif
endif
endwhile
if (length (plane) < 1)
plane = [1, 2];
elseif (length (plane) < 2)
plane = [1, plane];
endif
else
plane = [1, 2];
endif
else
if (! (isvector (plane) && length (plane) == 2
&& all (plane == fix (plane)) && all (plane > 0)
&& all (plane < (nd + 1)) && plane(1) != plane(2)))
error ("rotdim: PLANE must be a 2-element integer vector defining a valid plane");
endif
endif
n = rem (n, 4);
if (n < 0)
n += 4;
endif
if (n == 0)
B = A;
elseif (n == 2)
B = flip (flip (A, plane(1)), plane(2));
elseif (n == 1 || n == 3)
perm = 1:nd;
perm(plane(1)) = plane(2);
perm(plane(2)) = plane(1);
B = permute (A, perm);
if (n == 1)
B = flip (B, min (plane));
else
B = flip (B, max (plane));
endif
endif
endfunction
%!shared r, rr
%! r = [1,2,3]; rr = [3,2,1];
%!assert (rotdim (r, 0), r)
%!assert (rotdim (r, 1), rr')
%!assert (rotdim (r, 2), rr)
%!assert (rotdim (r, 3), r')
%!assert (rotdim (r, 3), rotdim (r, -1))
%!assert (rotdim (r, 1), rotdim (r))
%!shared c, cr
%! c = [1;2;3]; cr = [3;2;1];
%!assert (rotdim (c, 0), c)
%!assert (rotdim (c, 1), c')
%!assert (rotdim (c, 2), cr)
%!assert (rotdim (c, 3), cr')
%!assert (rotdim (c, 3), rotdim (c, -1))
%!assert (rotdim (c, 1), rotdim (c))
%!shared m
%! m = [1,2;3,4];
%!assert (rotdim (m, 0), m)
%!assert (rotdim (m, 1), [2,4;1,3])
%!assert (rotdim (m, 2), [4,3;2,1])
%!assert (rotdim (m, 3), [3,1;4,2])
%!assert (rotdim (m, 3), rotdim (m, -1))
%!assert (rotdim (m, 1), rotdim (m))
## FIXME: We need tests for multidimensional arrays
## and different values of PLANE.
%!error <Invalid call> rotdim ()
|