1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
########################################################################
##
## Copyright (C) 2000-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {[@var{s}, @var{i}] =} sortrows (@var{A})
## @deftypefnx {} {[@var{s}, @var{i}] =} sortrows (@var{A}, @var{c})
## Sort the rows of the matrix @var{A} according to the order of the columns
## specified in @var{c}.
##
## By default (@var{c} omitted, or a particular column unspecified in @var{c})
## an ascending sort order is used. However, if elements of @var{c} are
## negative then the corresponding column is sorted in descending order. If
## the elements of @var{A} are strings then a lexicographical sort is used.
##
## Example: sort by column 2 in descending order, then 3 in ascending order
##
## @example
## @group
## x = [ 7, 1, 4;
## 8, 3, 5;
## 9, 3, 6 ];
## sortrows (x, [-2, 3])
## @result{} 8 3 5
## 9 3 6
## 7 1 4
## @end group
## @end example
##
## @seealso{sort}
## @end deftypefn
function [s, i] = sortrows (A, c)
if (nargin < 1)
print_usage ();
endif
if (nargin == 2)
if (! (isnumeric (c) && isvector (c)))
error ("sortrows: C must be a numeric vector");
elseif (any (c == 0) || any (abs (c) > columns (A)))
error ("sortrows: all elements of C must be in the range [1, columns (A)]");
endif
endif
default_mode = "ascend";
reverse_mode = "descend";
if (issparse (A) || iscell (A))
## FIXME: Eliminate this case once __sort_rows_idx__ is fixed to
## handle sparse matrices.
if (nargin == 1)
i = sort_rows_idx_generic (default_mode, reverse_mode, A);
else
i = sort_rows_idx_generic (default_mode, reverse_mode, A, c);
endif
elseif (nargin == 1)
i = __sort_rows_idx__ (A, default_mode);
elseif (all (c > 0))
i = __sort_rows_idx__ (A(:,c), default_mode);
elseif (all (c < 0))
i = __sort_rows_idx__ (A(:,-c), reverse_mode);
else
## Otherwise, fall back to the old algorithm.
i = sort_rows_idx_generic (default_mode, reverse_mode, A, c);
endif
s = A(i,:);
endfunction
function i = sort_rows_idx_generic (default_mode, reverse_mode, m, c)
if (nargin == 3)
indices = [1:columns(m)]';
mode(1:columns(m)) = {default_mode};
else
for j = 1:length (c)
if (c(j) < 0)
mode{j} = reverse_mode;
else
mode{j} = default_mode;
endif
endfor
indices = abs (c(:));
endif
## Since sort is 'stable' the order of identical elements will be
## preserved, so by traversing the sort indices in reverse order we
## will make sure that identical elements in index i are subsorted by
## index j.
indices = flipud (indices);
mode = flipud (mode');
i = [1:rows(m)]';
for j = 1:length (indices)
M = m(i, indices(j));
if (iscell (M) && ! iscellstr (M))
M = cell2mat (M);
endif
[~, idx] = sort (M, mode{j});
i = i(idx);
endfor
endfunction
%!test
%! m = [1, 1; 1, 2; 3, 6; 2, 7];
%! c = [1, -2];
%! [x, idx] = sortrows (m, c);
%! [sx, sidx] = sortrows (sparse (m), c);
%! assert (x, [1, 2; 1, 1; 2, 7; 3, 6]);
%! assert (idx, [2; 1; 4; 3]);
%! assert (issparse (sx));
%! assert (x, full (sx));
%! assert (idx, sidx);
%!test
%! m = [1, 0, 0, 4];
%! c = 1;
%! [x, idx] = sortrows (m, c);
%! [sx, sidx] = sortrows (sparse (m), c);
%! assert (x, m);
%! assert (idx, 1);
%! assert (issparse (sx));
%! assert (x, full (sx));
%! assert (idx, sidx);
%!test <*42523>
%! C = {1, 2, "filename1";
%! 3, 4, "filename2";
%! 5, 6, "filename3"};
%! C2 = sortrows (C, -1);
%! assert (C2, flipud (C));
## Test input validation
%!error <Invalid call> sortrows ()
%!error sortrows (1, "ascend")
%!error sortrows (1, ones (2,2))
%!error sortrows (1, 0)
%!error sortrows (1, 2)
|