1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
|
########################################################################
##
## Copyright (C) 2008-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{q} =} triplequad (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb}, @var{za}, @var{zb})
## @deftypefnx {} {@var{q} =} triplequad (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb}, @var{za}, @var{zb}, @var{tol})
## @deftypefnx {} {@var{q} =} triplequad (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb}, @var{za}, @var{zb}, @var{tol}, @var{quadf})
## @deftypefnx {} {@var{q} =} triplequad (@var{f}, @var{xa}, @var{xb}, @var{ya}, @var{yb}, @var{za}, @var{zb}, @var{tol}, @var{quadf}, @dots{})
## Numerically evaluate the triple integral of @var{f}.
##
## @var{f} is a function handle, inline function, or string containing the name
## of the function to evaluate. The function @var{f} must have the form
## @math{w = f(x,y,z)} where either @var{x} or @var{y} is a vector and the
## remaining inputs are scalars. It should return a vector of the same length
## and orientation as @var{x} or @var{y}.
##
## @var{xa}, @var{ya}, @var{za} and @var{xb}, @var{yb}, @var{zb} are the lower
## and upper limits of integration for x, y, and z respectively. The
## underlying integrator determines whether infinite bounds are accepted.
##
## The optional argument @var{tol} defines the absolute tolerance used to
## integrate each sub-integral. The default value is 1e-6.
##
## The optional argument @var{quadf} specifies which underlying integrator
## function to use. Any choice but @code{quad} is available and the default
## is @code{quadcc}.
##
## Additional arguments, are passed directly to @var{f}. To use the default
## value for @var{tol} or @var{quadf} one may pass @qcode{':'} or an empty
## matrix ([]).
## @seealso{integral3, integral2, dblquad, quad, quadv, quadl, quadgk, quadcc,
## trapz}
## @end deftypefn
function q = triplequad (f, xa, xb, ya, yb, za, zb, tol = 1e-6, quadf = @quadcc, varargin)
if (nargin < 7)
print_usage ();
endif
## Allow use of empty matrix ([]) to indicate default
if (isempty (tol))
tol = 1e-6;
endif
if (isempty (quadf))
quadf = @quadcc;
endif
inner = @__triplequad_inner__;
if (ischar (f))
f = @(x,y,z) feval (f, x, y, z, varargin{:});
varargin = {};
endif
q = dblquad (@(y, z) inner (y, z, f, xa, xb, tol, quadf, varargin{:}), ...
ya, yb, za, zb, tol);
endfunction
function q = __triplequad_inner__ (y, z, f, xa, xb, tol, quadf, varargin)
q = zeros (size (y));
for i = 1 : length (y)
q(i) = feval (quadf, @(x) f (x, y(i), z, varargin{:}), xa, xb, tol);
endfor
endfunction
%!assert (triplequad (@(x,y,z) exp (-x.^2 - y.^2 - z.^2) , -1, 1, -1, 1, -1, 1, [], @quadcc), pi^(3/2) * erf (1).^3, 1e-6)
## These tests are too expensive to run normally (~30 sec each). Disable them
%!#assert (triplequad (@(x,y,z) exp (-x.^2 - y.^2 - z.^2) , -1, 1, -1, 1, -1, 1, [], @quadgk), pi^(3/2) * erf (1).^3, 1e-6)
%!#assert (triplequad (@(x,y,z) exp (-x.^2 - y.^2 - z.^2) , -1, 1, -1, 1, -1, 1, [], @quadl), pi^(3/2) * erf (1).^3, 1e-6)
%!#assert (triplequad (@(x,y,z) exp (-x.^2 - y.^2 - z.^2) , -1, 1, -1, 1, -1, 1, [], @quadv), pi^(3/2) * erf (1).^3, 1e-6)
|