File: delaunayn.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (263 lines) | stat: -rw-r--r-- 10,356 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
########################################################################
##
## Copyright (C) 2007-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{T} =} delaunayn (@var{pts})
## @deftypefnx {} {@var{T} =} delaunayn (@var{pts}, @var{options})
## Compute the Delaunay triangulation for an N-dimensional set of points.
##
## The Delaunay triangulation is a tessellation of the convex hull of a set of
## points such that no N-sphere defined by the N-triangles contains any other
## points from the set.
##
## The input matrix @var{pts} of size [n, dim] contains n points in a space of
## dimension dim.  The return matrix @var{T} has size [m, dim+1].  Each row of
## @var{T} contains a set of indices back into the original set of points
## @var{pts} which describes a simplex of dimension dim.  For example, a 2-D
## simplex is a triangle and 3-D simplex is a tetrahedron.
##
## An optional second argument, which must be a string or cell array of
## strings, contains options passed to the underlying qhull command.  See the
## documentation for the Qhull library for details
## @url{http://www.qhull.org/html/qh-quick.htm#options}.
## The default options depend on the dimension of the input:
##
## @itemize
## @item 2-D and 3-D: @var{options} = @code{@{"Qt", "Qbb", "Qc"@}}
##
## @item 4-D and higher: @var{options} = @code{@{"Qt", "Qbb", "Qc", "Qx"@}}
## @end itemize
##
## If Qhull fails for 2-D input the triangulation is attempted again with
## the options @code{@{"Qt", "Qbb", "Qc", "Qz"@}} which may result in
## reduced accuracy.
##
## If @var{options} is not present or @code{[]} then the default arguments are
## used.  Otherwise, @var{options} replaces the default argument list.
## To append user options to the defaults it is necessary to repeat the
## default arguments in @var{options}.  Use a null string to pass no arguments.
##
## @seealso{delaunay, convhulln, voronoin, trimesh, tetramesh}
## @end deftypefn

function T = delaunayn (pts, varargin)

  if (nargin < 1)
    print_usage ();
  endif

  ## NOTE: varargin options input validation is performed in __delaunayn__
  if ((! isnumeric (pts)) || (ndims (pts) > 2))
    error ("delaunayn: input PTS must be a 2-dimensional numeric array");
  endif

  ## Perform delaunay calculation using either default or specified options
  if (isempty (varargin) || isempty (varargin{1}))
    try
      T = __delaunayn__ (pts);
    catch err
      if (columns (pts) <= 2)
        T = __delaunayn__ (pts, "Qt Qbb Qc Qz");
      else
        rethrow (err);
      endif
    end_try_catch
  else
    T = __delaunayn__ (pts, varargin{:});
  endif

  ## Avoid erroneous calculations due to integer truncation.  See bug #64658.
  ## FIXME: Large integer values in excess of flintmax can lose precision
  ##        when converting from (u)int64 to double.  Consider modifying
  ##        simplex checking to account for large integer math to avoid this
  ##        problem.
  if (isinteger (pts))
    if (any (abs (pts(:)) > flintmax ('double')))
      warning (["delaunayn: conversion of large integer values to ", ...
                "double, potential loss of precision may result in " ...
                "erroneous triangulations."]);
    endif
    pts = double (pts);
  endif

  ## Begin check for and removal of trivial simplices
  if (! isequal (T, 0))  # skip trivial simplex check if no simplexes

    if (isa (pts, "single"))
      tol = 1e3 * eps ("single");
    else
      tol = 1e3 * eps;
    endif

    ## Try to remove the ~zero volume simplices.  The volume of the i-th simplex
    ## is given by abs(det(pts(T(i,2:end),:)-pts(T(i,1),:)))/factorial(ndim+1)
    ## (reference http://en.wikipedia.org/wiki/Simplex).  Any simplex with a
    ## relative volume less than some arbitrary criteria is rejected.  The
    ## criteria we use is the volume of a simplex corresponding to an
    ## orthogonal simplex (rectangle, rectangular prism, etc.) with edge lengths
    ## equal to the common-origin edge lengths of the original simplex.  If the
    ## relative volume is 1e3*eps then the simplex is rejected.  Note division
    ## of the two volumes means that the factor factorial(ndim+1) is dropped
    ## from volume calculations.

    [nt, nd] = size (T);  # nt = simplex count, nd = # of simplex points
    dim = nd - 1;

    ## Calculate common origin edge vectors for each simplex (p2-p1,p3-p1,...)
    ## Store in 3-D array such that:
    ## rows = nt simplexes, cols = coordinates, pages = simplex edges
    edge_vecs =  permute (reshape (pts(T(:, 2:nd), :).', [dim, nt, dim]), ...
                          [2, 1, 3]) - pts(T(:, 1), :, ones (1, 1, dim));

    ## Calculate orthogonal simplex volumes for comparison
    orthog_simplex_vols = sqrt (prod (sumsq (edge_vecs, 2), 3));

    ## Calculate simplex volumes according to problem dimension
    if (nd == 3)
      ## 2-D: area = cross product of triangle edge vectors
      vol = edge_vecs(:,1,1) .* edge_vecs(:,2,2) ...
            - edge_vecs(:,1,2) .* edge_vecs(:,2,1);

    elseif (nd == 4)
      ## 3-D: vol = scalar triple product [a.(b x c)]
      vol = edge_vecs(:,1,1) .* ...
              (edge_vecs(:,2,2) .* edge_vecs(:,3,3) - ...
                edge_vecs(:,3,2) .* edge_vecs(:,2,3)) ...
            - edge_vecs(:,2,1) .* ...
              (edge_vecs(:,1,2) .* edge_vecs(:,3,3) - ...
                edge_vecs(:,3,2) .* edge_vecs(:,1,3)) ...
            + edge_vecs(:,3,1) .* ...
              (edge_vecs(:,1,2) .* edge_vecs(:,2,3) - ...
                edge_vecs(:,2,2) .* edge_vecs(:,1,3));

    else
      ## 1-D and >= 4-D: simplex 'volume' proportional to det|edge_vecs|

      ## FIXME: Vectorize this for n-D inputs without excessive memory impact
      ## over __delaunayn__ itself, or move simplex checking into __delaunayn__;
      ## perhaps with an optimized page-wise determinant.
      ## See bug #60818 for speed/memory improvement attempts and concerns.
      vol = zeros (nt, 1);

      ## Reshape so det can operate in dim 1&2
      edge_vecs = permute (edge_vecs, [3, 2, 1]);

      ## Calculate determinant for arbitrary problem dimension
      for ii = 1:nt
        vol(ii) = det (edge_vecs(:, :, ii));
      endfor
    endif

    ## Mark simplices with relative volume < tol for removal
    idx = (abs ((vol) ./ orthog_simplex_vols)) < tol;

    ## Remove trivially small simplexes from T
    T(idx, :) = [];

    ## Ensure CCW node order for consistent outward normal (bug #53397)
    ## simplest method of maintaining positive unit normal direction is to
    ## reverse order of two nodes; this preserves 'nice' monotonic descending
    ## node 1 ordering.  Currently ignores 1-D cases for compatibility.
    if (dim > 1 && any (negvol = (vol(! idx) < 0)))
      T(negvol, [2, 3]) = T(negvol, [3, 2]);
    endif

  endif

endfunction


## Test 1-D input
%!testif HAVE_QHULL
%! assert (sortrows (sort (delaunayn ([1;2]), 2)), [1, 2]);
%! assert (sortrows (sort (delaunayn ([1;2;3]), 2)), [1, 2; 2, 3]);

## Test 2-D input
%!testif HAVE_QHULL
%! x = [-1, 0; 0, 1; 1, 0; 0, -1; 0, 0];
%! assert (sortrows (sort (delaunayn (x), 2)), [1,2,5;1,4,5;2,3,5;3,4,5]);

## Test 3-D input
%!testif HAVE_QHULL
%! x = [-1, -1, 1, 0, -1]; y = [-1, 1, 1, 0, -1]; z = [0, 0, 0, 1, 1];
%! assert (sortrows (sort (delaunayn ([x(:) y(:) z(:)]), 2)),
%!         [1,2,3,4;1,2,4,5]);

## 3-D test with trivial simplex removal
%!testif HAVE_QHULL
%! x = [0 0 0; 0 0 1; 0 1 0; 1 0 0; 0 1 1; 1 0 1; 1 1 0; 1 1 1; 0.5 0.5 0.5];
%! T = sortrows (sort (delaunayn (x), 2));
%! assert (rows (T), 12);

## 4-D single simplex test
%!testif HAVE_QHULL
%! x = [0 0 0 0; 1 0 0 0; 1 1 0 0; 0 0 1 0; 0 0 0 1];
%! T = sort (delaunayn (x), 2);
%! assert (T, [1 2 3 4 5]);

## 4-D two simplices test
%!testif HAVE_QHULL
%! x = [0 0 0 0; 1 0 0 0; 1 1 0 0; 0 0 1 0; 0 0 0 1; 0 0 0 2];
%! T = sortrows (sort (delaunayn (x), 2));
%! assert (rows (T), 2);
%! assert (T, [1 2 3 4 5; 2 3 4 5 6]);

## Test negative simplex produce positive normals
## 2-D test
%!testif HAVE_QHULL <*53397>
%! x = [-1, 0; 0, 1; 1, 0; 0, -1; 0, 0];
%! y = delaunayn (x);
%! edges = permute (reshape (x(y(:, 2:end), :).', [2, 4, 2]), [2, 1, 3]) - ...
%!         x(y(:, 1), :, ones (1, 1, 2));
%! vol = edges(:,1,1) .* edges(:,2,2) - edges(:,1,2) .* edges(:,2,1);
%! assert (all (vol >= 0));

## 3-D test
%!testif HAVE_QHULL <*53397>
%! x = [[-1, -1, 1, 0, -1]',[-1, 1, 1, 0, -1]',[0, 0, 0, 1, 1]'];
%! y = delaunayn (x);
%! edges = permute (reshape (x(y(:, 2:end), :).', [3, 2, 3]), [2, 1, 3]) - ...
%!         x(y(:, 1), :, ones (1, 1, 3));
%! vol = edges(:,1,1) .* ...
%!            (edges(:,2,2) .* edges(:,3,3) - edges(:,3,2) .* edges(:,2,3)) ...
%!       - edges(:,2,1) .* ...
%!            (edges(:,1,2) .* edges(:,3,3) - edges(:,3,2) .* edges(:,1,3)) ...
%!       + edges(:,3,1) .* ...
%!            (edges(:,1,2) .* edges(:,2,3) - edges(:,2,2) .* edges(:,1,3));
%! assert (all (vol >= 0));

## Avoid integer input erroneous volume truncation
%!testif HAVE_QHULL <*64658>
%! pts = [0 0 0; 0 0 10; 0 10 0; 0 10 10; 10 0 0; ...
%!              10 0 10; 10 10 0; 10 10 10; 5 5 5];
%! assert (isempty (delaunayn (int32 (pts))), false);
%! assert (delaunayn (pts), delaunayn (int32 (pts)));

## Input validation tests
%!error <Invalid call> delaunayn ()
%!error <input PTS must be> delaunayn ("abc")
%!error <input PTS must be> delaunayn ({1})
%!error <input PTS must be> delaunayn (true)
%!error <input PTS must be> delaunayn (ones (3,3,3))