1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
########################################################################
##
## Copyright (C) 2007-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{yi} =} griddatan (@var{x}, @var{y}, @var{xi})
## @deftypefnx {} {@var{yi} =} griddatan (@var{x}, @var{y}, @var{xi}, @var{method})
## @deftypefnx {} {@var{yi} =} griddatan (@var{x}, @var{y}, @var{xi}, @var{method}, @var{options})
##
## Interpolate irregular source data @var{x}, @var{y} at points specified by
## @var{xi}.
##
## The input @var{x} is an MxN matrix representing M points in an N-dimensional
## space. The input @var{y} is a single-valued column vector (Mx1)
## representing a function evaluated at the points @var{x}, i.e.,
## @code{@var{y} = fcn (@var{x})}. The input @var{xi} is a list of points
## for which the function output @var{yi} should be approximated through
## interpolation. @var{xi} must have the same number of columns (@var{N})
## as @var{x} so that the dimensionality matches.
##
## The optional input interpolation @var{method} can be @qcode{"nearest"} or
## @qcode{"linear"}. When the method is @qcode{"nearest"}, the output @var{yi}
## will be the closest point in the original data @var{x} to the query point
## @var{xi}. When the method is @qcode{"linear"}, the output @var{yi} will
## be a linear interpolation between the two closest points in the original
## source data. If @var{method} is omitted or empty, it defaults to
## @qcode{"linear"}.
##
## The optional argument @var{options} is passed directly to Qhull when
## computing the Delaunay triangulation used for interpolation. See
## @code{delaunayn} for information on the defaults and how to pass different
## values.
##
## Example
##
## @example
## @group
## ## Evaluate sombrero() function at irregular data points
## x = 16*gallery ("uniformdata", [200,1], 1) - 8;
## y = 16*gallery ("uniformdata", [200,1], 11) - 8;
## z = sin (sqrt (x.^2 + y.^2)) ./ sqrt (x.^2 + y.^2);
## ## Create a regular grid and interpolate data
## [xi, yi] = ndgrid (linspace (-8, 8, 50));
## zi = griddatan ([x, y], z, [xi(:), yi(:)]);
## zi = reshape (zi, size (xi));
## ## Plot results
## clf ();
## plot3 (x, y, z, "or");
## hold on
## surf (xi, yi, zi);
## legend ("Original Data", "Interpolated Data");
## @end group
## @end example
##
## Programming Notes: If the input is complex the real and imaginary parts
## are interpolated separately. Interpolation is based on a Delaunay
## triangulation and any query values outside the convex hull of the input
## points will return @code{NaN}. For 2-D and 3-D data additional
## interpolation methods are available by using the @code{griddata} function.
## @seealso{griddata, griddata3, delaunayn}
## @end deftypefn
function yi = griddatan (x, y, xi, method = "linear", varargin)
if (nargin < 3)
print_usage ();
endif
[m, n] = size (x);
[mi, ni] = size (xi);
if (m < n + 1)
error ("griddatan: number of points in X (rows of X) must be greater than dimensionality of data + 1 (columns of X + 1)");
endif
if (! iscolumn (y) || rows (y) != m)
error ("griddatan: Y must be a column vector with the same number of points (rows) as X");
endif
if (n != ni)
error ("griddatan: dimension of query data XI (columns) must match X");
endif
if (nargin > 3)
if (isempty (method))
method = "linear";
elseif (! ischar (method))
error ("griddatan: METHOD must be a string");
else
method = lower (method);
endif
if (strcmp (method, "linear") || strcmp (method, "nearest"))
## Do nothing, these are implemented methods
elseif (strcmp (method, "v4"))
error ('griddatan: "%s" METHOD is available for 2-D inputs by using "griddata"', method);
elseif (any (strcmp (method, {"cubic", "natural"})))
## FIXME: Remove when griddata.m supports these methods.
error ('griddatan: "%s" interpolation METHOD not yet implemented', method);
else
error ('griddatan: unknown interpolation METHOD: "%s"', method);
endif
endif
## triangulate data
tri = delaunayn (x, varargin{:});
yi = NaN (mi, 1);
if (strcmp (method, "linear"))
## search for every point the enclosing triangle
[tri_list, bary_list] = tsearchn (x, tri, xi);
## only keep the points within triangles.
valid = ! isnan (tri_list);
tri_list = tri_list(valid);
bary_list = bary_list(valid, :);
nr_t = rows (tri_list);
## Use barycentric coordinate of point to calculate yi
if (isscalar (tri_list))
## Special case required by orientation rules for vector/vector index.
yi(valid) = sum (y(tri(tri_list,:)).' .* bary_list, 2);
else
yi(valid) = sum (y(tri(tri_list,:)) .* bary_list, 2);
endif
else
## search index of nearest point
idx = dsearchn (x, tri, xi);
valid = ! isnan (idx);
yi(valid) = y(idx(valid));
endif
endfunction
%!testif HAVE_QHULL
%! [xx,yy] = meshgrid (linspace (-1,1,32));
%! xi = [xx(:), yy(:)];
%! x = 2*rand (100,2) - 1;
%! x = [x;1,1;1,-1;-1,-1;-1,1];
%! y = sin (2 * sum (x.^2,2));
%! zz = griddatan (x,y,xi, "linear");
%! zz2 = griddata (x(:,1),x(:,2),y,xi(:,1),xi(:,2), "linear");
%! assert (zz, zz2, 1e-10);
%!testif HAVE_QHULL
%! [xx,yy] = meshgrid (linspace (-1,1,32));
%! xi = [xx(:), yy(:)];
%! x = 2*rand (100,2) - 1;
%! x = [x;1,1;1,-1;-1,-1;-1,1];
%! y = sin (2*sum (x.^2,2));
%! zz = griddatan (x,y,xi, "nearest");
%! zz2 = griddata (x(:,1),x(:,2),y,xi(:,1),xi(:,2), "nearest");
%! assert (zz, zz2, 1e-10);
%!testif HAVE_QHULL <*56515>
%! x = [ 0, 0; 1, 1; 0, 1; 1, 0 ];
%! y = [ 1; 2; 3; 4 ];
%! xi = [ .5, .5 ];
%! yi = griddatan (x, y, xi);
## Test input validation
%!error <Invalid call> griddatan ()
%!error <Invalid call> griddatan (1)
%!error <Invalid call> griddatan (1,2)
%!error <number of points in X> griddatan (1,2,3)
%!error <Y must be a column vector> griddatan ([1;2],[3,4], 1)
%!error <Y must .* same number of points .* as X> griddatan ([1;2],[3;4;5], 1)
%!error <dimension of .* XI .* must match X> griddatan ([1;2],[3;4], [1, 2])
%!error <METHOD must be a string> griddatan ([1;2],[3;4], 1, 5)
%!error <"v4" METHOD is available for 2-D> griddatan ([1;2],[3;4], 1, "v4")
%!error <"cubic" .* not yet implemented> griddatan ([1;2],[3;4], 1, "cubic")
%!error <"natural" .* not yet implemented> griddatan ([1;2],[3;4], 1, "natural")
%!error <unknown .* METHOD: "foobar"> griddatan ([1;2],[3;4], 1, "foobar")
|