File: inpolygon.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (170 lines) | stat: -rw-r--r-- 5,969 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
########################################################################
##
## Copyright (C) 2006-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{in} =} inpolygon (@var{x}, @var{y}, @var{xv}, @var{yv})
## @deftypefnx {} {[@var{in}, @var{on}] =} inpolygon (@var{x}, @var{y}, @var{xv}, @var{yv})
##
## For a polygon defined by vertex points @code{(@var{xv}, @var{yv})}, return
## true if the points @code{(@var{x}, @var{y})} are inside (or on the boundary)
## of the polygon; Otherwise, return false.
##
## The input variables @var{x} and @var{y}, must have the same dimension.
##
## The optional output @var{on} returns true if the points are exactly on the
## polygon edge, and false otherwise.
## @seealso{delaunay}
## @end deftypefn

## Algorithm: The method for determining if a point is in a polygon is based on
## the PnPoly algorithm from Prof W. Randolph Franklin,
## (Rensselaer Polytechnic Institute, Troy NY), originally written in 1970.
## URL: http://wrfranklin.org/pnpoly

function [in, on] = inpolygon (x, y, xv, yv)

  if (nargin != 4)
    print_usage ();
  endif

  if (! (isreal (x) && isreal (y) && isnumeric (x) && isnumeric (y)
         && size_equal (x, y)))
    error ("inpolygon: X and Y must be real arrays of the same size");
  elseif (! (isreal (xv) && isreal (yv) && isvector (xv) && isvector (yv)
             && size_equal (xv, yv)))
    error ("inpolygon: XV and YV must be real vectors of the same size");
  endif

  npol = length (xv);

  in = on = false (size (x));

  j = npol;
  for i = 1 : npol
    delta_xv = xv(j) - xv(i);
    delta_yv = yv(j) - yv(i);
    ## distance = [distance from (x,y) to edge] * length(edge)
    distance = delta_xv .* (y - yv(i)) - (x - xv(i)) .* delta_yv;

    ## is y between the y-values of edge i,j AND (x,y) on the left of the edge?
    idx1 = (((yv(i) <= y & y < yv(j)) | (yv(j) <= y & y < yv(i)))
            & 0 < distance.*delta_yv);
    in(idx1) = ! in(idx1);

    ## Check if (x,y) are actually on the boundary of the polygon.
    idx2 = (((yv(i) <= y & y <= yv(j)) | (yv(j) <= y & y <= yv(i)))
            & ((xv(i) <= x & x <= xv(j)) | (xv(j) <= x & x <= xv(i)))
            & (0 == distance | ! delta_xv));
    on(idx2) = true;

    j = i;
  endfor

  ## Matlab definition include both in polygon and on polygon points.
  in |= on;

endfunction


%!demo
%! xv = [ 0.05840, 0.48375, 0.69356, 1.47478, 1.32158, ...
%!        1.94545, 2.16477, 1.87639, 1.18218, 0.27615, ...
%!        0.05840 ];
%! yv = [ 0.60628, 0.04728, 0.50000, 0.50000, 0.02015, ...
%!        0.18161, 0.78850, 1.13589, 1.33781, 1.04650, ...
%!        0.60628 ];
%! xa = [0:0.1:2.3];
%! ya = [0:0.1:1.4];
%! [x,y] = meshgrid (xa, ya);
%! [in,on] = inpolygon (x, y, xv, yv);
%! inside = in & ! on;
%!
%! clf;
%! plot (xv, yv);
%! hold on;
%! plot (x(inside), y(inside), "og");
%! plot (x(! in), y(! in), "sm");
%! plot (x(on), y(on), "^b");
%! hold off;
%! disp ("Green circles are inside polygon, magenta squares are outside,");
%! disp ("and blue triangles are on the boundary.");

%!demo
%!  xv = [ 0.05840, 0.48375, 0.69356, 1.47478, 1.32158, ...
%!         1.94545, 2.16477, 1.87639, 1.18218, 0.27615, ...
%!         0.05840, 0.73295, 1.28913, 1.74221, 1.16023, ...
%!         0.73295, 0.05840 ];
%!  yv = [ 0.60628, 0.04728, 0.50000, 0.50000, 0.02015, ...
%!         0.18161, 0.78850, 1.13589, 1.33781, 1.04650, ...
%!         0.60628, 0.82096, 0.67155, 0.96114, 1.14833, ...
%!         0.82096, 0.60628];
%! xa = [0:0.1:2.3];
%! ya = [0:0.1:1.4];
%! [x, y] = meshgrid (xa, ya);
%! [in, on] = inpolygon (x, y, xv, yv);
%! inside = in & ! on;
%!
%! clf;
%! plot (xv, yv);
%! hold on;
%! plot (x(inside), y(inside), "og");
%! plot (x(! in), y(! in), "sm");
%! plot (x(on), y(on), "^b");
%! hold off;
%! disp ("Green circles are inside polygon, magenta squares are outside,");
%! disp ("and blue triangles are on the boundary.");

%!test
%! [in, on] = inpolygon ([1, 0, 2], [1, 0, 0], [-1, -1, 1, 1], [-1, 1, 1, -1]);
%! assert (in, [true, true, false]);
%! assert (on, [true, false, false]);

## 3-D array input
%!test
%! x = zeros (2, 2, 2);
%! x(1, 1, 1) = 1;
%! x(2, 2, 2) = 2;
%! y = zeros (2, 2, 2);
%! y(1, 1, 1) = 1;
%! y(2, 2, 2) = -1;
%! [in, on] = inpolygon (x, y, [-1, -1, 1, 1], [-1, 1, 1, -1]);
%! IN = true (2, 2, 2);
%! IN(2, 2, 2) = false;
%! ON = false (2, 2, 2);
%! ON(1, 1, 1) = true;
%! assert (in, IN);
%! assert (on, ON);

## Test input validation
%!error <Invalid call> inpolygon ()
%!error <Invalid call> inpolygon (1, 2)
%!error <Invalid call> inpolygon (1, 2, 3)
%!error <X and Y must be real> inpolygon (1i, 1, [3, 4], [5, 6])
%!error <X and Y must be real> inpolygon (1, {1}, [3, 4], [5, 6])
%!error <X and Y must be .* the same size> inpolygon (1, [1,2], [3, 4], [5, 6])
%!error <X and Y must be .* the same size> inpolygon (1, ones (1,1,2), [3, 4], [5, 6])
%!error <XV and YV must be real vectors> inpolygon (1, 1, [3i, 4], [5, 6])
%!error <XV and YV must be real vectors> inpolygon (1, 1, [3, 4], {5, 6})
%!error <XV and YV must .* the same size> inpolygon ([1,2], [3, 4], [5, 6], 1)