1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
########################################################################
##
## Copyright (C) 2006-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{in} =} inpolygon (@var{x}, @var{y}, @var{xv}, @var{yv})
## @deftypefnx {} {[@var{in}, @var{on}] =} inpolygon (@var{x}, @var{y}, @var{xv}, @var{yv})
##
## For a polygon defined by vertex points @code{(@var{xv}, @var{yv})}, return
## true if the points @code{(@var{x}, @var{y})} are inside (or on the boundary)
## of the polygon; Otherwise, return false.
##
## The input variables @var{x} and @var{y}, must have the same dimension.
##
## The optional output @var{on} returns true if the points are exactly on the
## polygon edge, and false otherwise.
## @seealso{delaunay}
## @end deftypefn
## Algorithm: The method for determining if a point is in a polygon is based on
## the PnPoly algorithm from Prof W. Randolph Franklin,
## (Rensselaer Polytechnic Institute, Troy NY), originally written in 1970.
## URL: http://wrfranklin.org/pnpoly
function [in, on] = inpolygon (x, y, xv, yv)
if (nargin != 4)
print_usage ();
endif
if (! (isreal (x) && isreal (y) && isnumeric (x) && isnumeric (y)
&& size_equal (x, y)))
error ("inpolygon: X and Y must be real arrays of the same size");
elseif (! (isreal (xv) && isreal (yv) && isvector (xv) && isvector (yv)
&& size_equal (xv, yv)))
error ("inpolygon: XV and YV must be real vectors of the same size");
endif
npol = length (xv);
in = on = false (size (x));
j = npol;
for i = 1 : npol
delta_xv = xv(j) - xv(i);
delta_yv = yv(j) - yv(i);
## distance = [distance from (x,y) to edge] * length(edge)
distance = delta_xv .* (y - yv(i)) - (x - xv(i)) .* delta_yv;
## is y between the y-values of edge i,j AND (x,y) on the left of the edge?
idx1 = (((yv(i) <= y & y < yv(j)) | (yv(j) <= y & y < yv(i)))
& 0 < distance.*delta_yv);
in(idx1) = ! in(idx1);
## Check if (x,y) are actually on the boundary of the polygon.
idx2 = (((yv(i) <= y & y <= yv(j)) | (yv(j) <= y & y <= yv(i)))
& ((xv(i) <= x & x <= xv(j)) | (xv(j) <= x & x <= xv(i)))
& (0 == distance | ! delta_xv));
on(idx2) = true;
j = i;
endfor
## Matlab definition include both in polygon and on polygon points.
in |= on;
endfunction
%!demo
%! xv = [ 0.05840, 0.48375, 0.69356, 1.47478, 1.32158, ...
%! 1.94545, 2.16477, 1.87639, 1.18218, 0.27615, ...
%! 0.05840 ];
%! yv = [ 0.60628, 0.04728, 0.50000, 0.50000, 0.02015, ...
%! 0.18161, 0.78850, 1.13589, 1.33781, 1.04650, ...
%! 0.60628 ];
%! xa = [0:0.1:2.3];
%! ya = [0:0.1:1.4];
%! [x,y] = meshgrid (xa, ya);
%! [in,on] = inpolygon (x, y, xv, yv);
%! inside = in & ! on;
%!
%! clf;
%! plot (xv, yv);
%! hold on;
%! plot (x(inside), y(inside), "og");
%! plot (x(! in), y(! in), "sm");
%! plot (x(on), y(on), "^b");
%! hold off;
%! disp ("Green circles are inside polygon, magenta squares are outside,");
%! disp ("and blue triangles are on the boundary.");
%!demo
%! xv = [ 0.05840, 0.48375, 0.69356, 1.47478, 1.32158, ...
%! 1.94545, 2.16477, 1.87639, 1.18218, 0.27615, ...
%! 0.05840, 0.73295, 1.28913, 1.74221, 1.16023, ...
%! 0.73295, 0.05840 ];
%! yv = [ 0.60628, 0.04728, 0.50000, 0.50000, 0.02015, ...
%! 0.18161, 0.78850, 1.13589, 1.33781, 1.04650, ...
%! 0.60628, 0.82096, 0.67155, 0.96114, 1.14833, ...
%! 0.82096, 0.60628];
%! xa = [0:0.1:2.3];
%! ya = [0:0.1:1.4];
%! [x, y] = meshgrid (xa, ya);
%! [in, on] = inpolygon (x, y, xv, yv);
%! inside = in & ! on;
%!
%! clf;
%! plot (xv, yv);
%! hold on;
%! plot (x(inside), y(inside), "og");
%! plot (x(! in), y(! in), "sm");
%! plot (x(on), y(on), "^b");
%! hold off;
%! disp ("Green circles are inside polygon, magenta squares are outside,");
%! disp ("and blue triangles are on the boundary.");
%!test
%! [in, on] = inpolygon ([1, 0, 2], [1, 0, 0], [-1, -1, 1, 1], [-1, 1, 1, -1]);
%! assert (in, [true, true, false]);
%! assert (on, [true, false, false]);
## 3-D array input
%!test
%! x = zeros (2, 2, 2);
%! x(1, 1, 1) = 1;
%! x(2, 2, 2) = 2;
%! y = zeros (2, 2, 2);
%! y(1, 1, 1) = 1;
%! y(2, 2, 2) = -1;
%! [in, on] = inpolygon (x, y, [-1, -1, 1, 1], [-1, 1, 1, -1]);
%! IN = true (2, 2, 2);
%! IN(2, 2, 2) = false;
%! ON = false (2, 2, 2);
%! ON(1, 1, 1) = true;
%! assert (in, IN);
%! assert (on, ON);
## Test input validation
%!error <Invalid call> inpolygon ()
%!error <Invalid call> inpolygon (1, 2)
%!error <Invalid call> inpolygon (1, 2, 3)
%!error <X and Y must be real> inpolygon (1i, 1, [3, 4], [5, 6])
%!error <X and Y must be real> inpolygon (1, {1}, [3, 4], [5, 6])
%!error <X and Y must be .* the same size> inpolygon (1, [1,2], [3, 4], [5, 6])
%!error <X and Y must be .* the same size> inpolygon (1, ones (1,1,2), [3, 4], [5, 6])
%!error <XV and YV must be real vectors> inpolygon (1, 1, [3i, 4], [5, 6])
%!error <XV and YV must be real vectors> inpolygon (1, 1, [3, 4], {5, 6})
%!error <XV and YV must .* the same size> inpolygon ([1,2], [3, 4], [5, 6], 1)
|