File: rotx.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (109 lines) | stat: -rw-r--r-- 3,079 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
########################################################################
##
## Copyright (C) 2019-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn {} {@var{T} =} rotx (@var{angle})
##
## @code{rotx} returns the 3x3 transformation matrix corresponding to an active
## rotation of a vector about the x-axis by the specified @var{angle}, given in
## degrees, where a positive angle corresponds to a counterclockwise
## rotation when viewing the y-z plane from the positive x side.
##
## The form of the transformation matrix is:
## @tex
## $$
## T = \left[\matrix{ 1 & 0 & 0 \cr
##                    0 & \cos(angle) & -\sin(angle)\cr
##                    0 & \sin(angle) & \cos(angle)}\right].
## $$
## @end tex
## @ifnottex
##
## @example
## @group
##      | 1      0           0      |
##  T = | 0  cos(@var{angle}) -sin(@var{angle}) |
##      | 0  sin(@var{angle})  cos(@var{angle}) |
## @end group
## @end example
## @end ifnottex
##
## This rotation matrix is intended to be used as a left-multiplying matrix
## when acting on a column vector, using the notation
## @code{@var{v} = @var{T}*@var{u}}.
## For example, a vector, @var{u}, pointing along the positive y-axis, rotated
## 90-degrees about the x-axis, will result in a vector pointing along the
## positive z-axis:
##
## @example
## @group
## >> u = [0 1 0]'
## u =
##    0
##    1
##    0
##
## >> T = rotx (90)
## T =
##    1.00000   0.00000   0.00000
##    0.00000   0.00000  -1.00000
##    0.00000   1.00000   0.00000
##
## >> v = T*u
## v =
##    0.00000
##    0.00000
##    1.00000
## @end group
## @end example
##
## @seealso{roty, rotz}
## @end deftypefn

function T = rotx (angle)

  if (nargin < 1 || ! isscalar (angle))
    print_usage ();
  endif

  angle *= pi / 180;

  s = sin (angle);
  c = cos (angle);

  T = [1 0 0; 0 c -s; 0 s c];

endfunction


## Function output tests
%!assert (rotx (0), [1 0 0; 0 1 0; 0 0 1])
%!assert (rotx (45), [1, 0, 0; [0; 0],[(sqrt(2)/2).*[1 -1; 1 1]]], 1e-12)
%!assert (rotx (90), [1 0 0; 0 0 -1; 0 1 0], 1e-12)
%!assert (rotx (180), [1 0 0; 0 -1 0; 0 0 -1], 1e-12)

## Test input validation
%!error <Invalid call> rotx ()
%!error <Invalid call> rotx ([1 2 3])