1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
########################################################################
##
## Copyright (C) 2000-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {} voronoi (@var{x}, @var{y})
## @deftypefnx {} {} voronoi (@var{x}, @var{y}, @var{options})
## @deftypefnx {} {} voronoi (@dots{}, "linespec")
## @deftypefnx {} {} voronoi (@var{hax}, @dots{})
## @deftypefnx {} {@var{h} =} voronoi (@dots{})
## @deftypefnx {} {[@var{vx}, @var{vy}] =} voronoi (@dots{})
## Plot the Voronoi diagram of points @code{(@var{x}, @var{y})}.
##
## The Voronoi facets with points at infinity are not drawn.
##
## The @var{options} argument, which must be a string or cell array of strings,
## contains options passed to the underlying qhull command.
## See the documentation for the Qhull library for details
## @url{http://www.qhull.org/html/qh-quick.htm#options}.
##
## If @qcode{"linespec"} is given it is used to set the color and line style of
## the plot.
##
## If an axes graphics handle @var{hax} is supplied then the Voronoi diagram is
## drawn on the specified axes rather than in a new figure.
##
## If a single output argument is requested then the Voronoi diagram will be
## plotted and a graphics handle @var{h} to the plot is returned.
##
## [@var{vx}, @var{vy}] = voronoi (@dots{}) returns the Voronoi vertices
## instead of plotting the diagram.
##
## @example
## @group
## x = rand (10, 1);
## y = rand (size (x));
## h = convhull (x, y);
## [vx, vy] = voronoi (x, y);
## plot (vx, vy, "-b", x, y, "o", x(h), y(h), "-g");
## legend ("", "points", "hull");
## @end group
## @end example
##
## @seealso{voronoin, delaunay, convhull}
## @end deftypefn
function [vx, vy] = voronoi (varargin)
if (nargin < 1)
print_usage ();
endif
narg = 1;
hax = NaN;
if (isscalar (varargin{1}) && ishghandle (varargin{1}))
hax = varargin{1};
if (! isaxes (hax))
error ("voronoi: HAX argument must be an axes object");
endif
narg += 1;
endif
if (nargin < 1 + narg || nargin > 3 + narg)
print_usage ();
endif
x = varargin{narg++};
y = varargin{narg++};
opts = {};
if (narg <= nargin)
if (iscell (varargin{narg}))
opts = varargin(narg++);
elseif (isnumeric (varargin{narg}))
## Accept, but ignore, the triangulation
narg += 1;
endif
endif
linespec = {"b"};
if (narg <= nargin && ischar (varargin{narg}))
linespec = varargin(narg);
endif
if (! isvector (x) || ! isvector (y) || numel (x) != numel (y))
error ("voronoi: X and Y must be vectors of the same length");
elseif (numel (x) < 2)
error ("voronoi: minimum of 2 points required");
endif
x = x(:);
y = y(:);
## Add box to approximate rays to infinity. For Voronoi diagrams the
## box should be close to the points themselves. To make the job of
## finding the exterior edges easier it should be bigger than the area
## enclosed by the points themselves.
## NOTE: Octave uses a factor of 2 although we don't have an mathematical
## justification for that.
xmin = min (x);
xmax = max (x);
ymin = min (y);
ymax = max (y);
## Factor for size of bounding box
scale = 2;
xdelta = xmax - xmin;
ydelta = ymax - ymin;
xbox = [xmin - scale * xdelta; xmin - scale * xdelta;
xmax + scale * xdelta; xmax + scale * xdelta];
ybox = [ymin - scale * ydelta; ymax + scale * ydelta;
ymax + scale * ydelta; ymin - scale * ydelta];
[p, c, infi] = __voronoi__ ("voronoi", [[x; xbox], [y; ybox]], opts{:});
## Build list of edges from points in facet.
c = c(! infi).';
edges = zeros (2, 0);
for i = 1:numel (c)
facet = c{i};
if (isempty (facet))
continue;
endif
edges = [edges, [facet; [facet(end), facet(1:end-1)]]];
endfor
## Keep only the unique edges of the Voronoi diagram
edges = sortrows (sort (edges).').';
edges = edges(:, [any(diff(edges, 1, 2)), true]);
if (numel (x) > 2)
## Eliminate the edges of the diagram representing the box.
## Exclude points outside a certain radius from the center of distribution.
## FIXME: Factor should be at least 1.0. Octave uses 1.1 for margin.
## There is no theoretical justification for this choice.
ctr = [(xmax + xmin)/2 , (ymax + ymin)/2];
radius = 1.1 * sumsq ([xmin, ymin] - ctr);
dist = sumsq (p - ctr, 2);
p_inside = (1:rows (p))(dist < radius);
edge_inside = any (ismember (edges, p_inside));
edges = edges(:, edge_inside);
else
## look for the edge between the two given points
for edge = edges
if (det ([[[1;1],p(edge,1:2)];1,x(1),y(1)])
* det ([[[1;1],p(edge,1:2)];1,x(2),y(2)]) < 0)
edges = edge;
break;
endif
endfor
## Use larger plot limits to make it more likely single bisector is shown.
xdelta = ydelta = max (xdelta, ydelta);
endif
## Get points of the diagram
Vvx = reshape (p(edges, 1), size (edges));
Vvy = reshape (p(edges, 2), size (edges));
if (nargout < 2)
if (isnan (hax))
hax = gca ();
endif
h = plot (hax, Vvx, Vvy, linespec{:}, x, y, '+');
lim = [xmin, xmax, ymin, ymax];
axis (lim + 0.1 * [[-1, 1] * xdelta, [-1, 1] * ydelta]);
if (nargout == 1)
vx = h;
endif
else
vx = Vvx;
vy = Vvy;
endif
endfunction
%!demo
%! voronoi (rand (10,1), rand (10,1));
%!testif HAVE_QHULL
%! phi = linspace (-pi, 3/4*pi, 8);
%! [x,y] = pol2cart (phi, 1);
%! [vx,vy] = voronoi (x,y);
%! assert (vx(2,:), zeros (1, columns (vx)), eps);
%! assert (vy(2,:), zeros (1, columns (vy)), eps);
%!testif HAVE_QHULL <*40996>
%! ## Special case of just 2 points
%! x = [0 1]; y = [1 0];
%! [vx, vy] = voronoi (x,y);
%! assert (vx, [-0.7; 1.7], eps);
%! assert (vy, [-0.7; 1.7], eps);
%!testif HAVE_QHULL <*38295>
%! x = [1,2,3]; y = [2,3,1];
%! [vx, vy] = voronoi (x,y);
%! assert (columns (vx), 3);
%!testif HAVE_QHULL <*37270>
%! ## Duplicate points can cause an internal error
%! x = [1,2,3, 3]; y = [2,3,1, 1];
%! [vx, vy] = voronoi (x,y);
## Input validation tests
%!error <Invalid call> voronoi ()
%!error voronoi (ones (3,1))
%!error voronoi (ones (3,1), ones (3,1), "invalid1", "invalid2", "invalid3")
%!error <HAX argument must be an axes object> voronoi (0, ones (3,1), ones (3,1))
%!error <X and Y must be vectors of the same length> voronoi (ones (3,1), ones (4,1))
%!error <minimum of 2 points required> voronoi (2.5, 3.5)
|