1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
########################################################################
##
## Copyright (C) 1999-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{hsv_map} =} rgb2hsv (@var{rgb_map})
## @deftypefnx {} {@var{hsv_img} =} rgb2hsv (@var{rgb_img})
## Transform a colormap or image from RGB to HSV color space.
##
## A color in the RGB space consists of red, green, and blue intensities.
##
## A color in HSV space is represented by hue, saturation and value
## (brightness) levels in a cylindrical coordinate system. Hue is the
## azimuth and describes the dominant color. Saturation is the radial
## distance and gives the amount of hue mixed into the color. Value is
## the height and is the amount of light in the color.
##
## Output class and size will be the same as input.
##
## @seealso{hsv2rgb, rgb2ind, rgb2gray}
## @end deftypefn
function hsv = rgb2hsv (rgb)
if (nargin < 1)
print_usage ();
endif
[rgb, sz, is_im, is_nd] ...
= colorspace_conversion_input_check ("rgb2hsv", "RGB", rgb);
## get the max and min for each row
s = min (rgb, [], 2);
v = max (rgb, [], 2);
## set hue to zero for undefined values (gray has no hue)
h = zeros (rows (rgb), 1);
notgray = (s != v);
## blue hue
idx = (v == rgb(:,3) & notgray);
if (any (idx))
h(idx) = 2/3 + 1/6 * (rgb(idx,1) - rgb(idx,2)) ./ (v(idx) - s(idx));
endif
## green hue
idx = (v == rgb(:,2) & notgray);
if (any (idx))
h(idx) = 1/3 + 1/6 * (rgb(idx,3) - rgb(idx,1)) ./ (v(idx) - s(idx));
endif
## red hue
idx = (v == rgb(:,1) & notgray);
if (any (idx))
h(idx) = 1/6 * (rgb(idx,2) - rgb(idx,3)) ./ (v(idx) - s(idx));
endif
h(h < 0) += 1; # correct for negative red
## set the saturation
s(! notgray) = 0;
s(notgray) = 1 - s(notgray) ./ v(notgray);
hsv = [h, s, v];
hsv = colorspace_conversion_revert (hsv, sz, is_im, is_nd);
endfunction
## Test pure colors and gray
%!assert (rgb2hsv ([1 0 0]), [0 1 1])
%!assert (rgb2hsv ([0 1 0]), [1/3 1 1])
%!assert (rgb2hsv ([0 0 1]), [2/3 1 1])
%!assert (rgb2hsv ([1 1 0]), [1/6 1 1])
%!assert (rgb2hsv ([0 1 1]), [1/2 1 1])
%!assert (rgb2hsv ([1 0 1]), [5/6 1 1])
%!assert (rgb2hsv ([0.5 0.5 0.5]), [0 0 0.5])
## Test tolarant input checking on floats
%!assert (rgb2hsv ([1.5 1 1]), [0 1/3 1.5], eps)
%!test
%! rgb_map = rand (64, 3);
%! assert (hsv2rgb (rgb2hsv (rgb_map)), rgb_map, 1e-6);
%!test
%! rgb_img = rand (64, 64, 3);
%! assert (hsv2rgb (rgb2hsv (rgb_img)), rgb_img, 1e-6);
## support sparse input
%!assert (rgb2hsv (sparse ([0 0 1])), sparse ([2/3 1 1]))
%!assert (rgb2hsv (sparse ([0 1 1])), sparse ([1/2 1 1]))
%!assert (rgb2hsv (sparse ([1 1 1])), sparse ([0 0 1]))
## Test input validation
%!error <Invalid call> rgb2hsv ()
%!error <invalid data type 'cell'> rgb2hsv ({1})
%!error <RGB must be a colormap or RGB image> rgb2hsv (ones (2,2))
## Test ND input
%!test
%! rgb = rand (16, 16, 3, 5);
%! hsv = zeros (size (rgb));
%! for i = 1:5
%! hsv(:,:,:,i) = rgb2hsv (rgb(:,:,:,i));
%! endfor
%! assert (rgb2hsv (rgb), hsv);
## Test output class and size for input images.
## Most of the tests only test for colormap input.
%!test
%! hsv = rgb2hsv (rand (10, 10, 3));
%! assert (class (hsv), "double");
%! assert (size (hsv), [10 10 3]);
%!test
%! hsv = rgb2hsv (rand (10, 10, 3, "single"));
%! assert (class (hsv), "single");
%! assert (size (hsv), [10 10 3]);
%!test
%! rgb = (rand (10, 10, 3) * 3 ) - 0.5; # values outside range [0 1]
%! hsv = rgb2hsv (rgb);
%! assert (class (hsv), "double");
%! assert (size (hsv), [10 10 3]);
%!test
%! rgb = (rand (10, 10, 3, "single") * 3 ) - 0.5; # values outside range [0 1]
%! hsv = rgb2hsv (rgb);
%! assert (class (hsv), "single");
%! assert (size (hsv), [10 10 3]);
%!test
%! hsv = rgb2hsv (randi ([0 255], 10, 10, 3, "uint8"));
%! assert (class (hsv), "double");
%! assert (size (hsv), [10 10 3]);
%!test
%! hsv = rgb2hsv (randi ([0 65535], 10, 10, 3, "uint16"));
%! assert (class (hsv), "double");
%! assert (size (hsv), [10 10 3]);
%!test
%! hsv = rgb2hsv (randi ([-128 127], 10, 10, 3, "int8"));
%! assert (class (hsv), "double");
%! assert (size (hsv), [10 10 3]);
%!test
%! rgb_double = reshape ([1 0 1 .5 1 1 0 .5 0 1 1 .5], [2 2 3]);
%! rgb_uint8 = reshape (uint8 ([255 0 255 128 255 255 0 128 0 255 255 128]),
%! [2 2 3]);
%! rgb_int16 = int16 (double (rgb_double * uint16 (65535)) -32768);
%! expected = reshape ([1/6 1/2 5/6 0 1 1 1 0 1 1 1 .5], [2 2 3]);
%!
%! assert (rgb2hsv (rgb_double), expected);
%! assert (rgb2hsv (rgb_uint8), expected, 0.005);
%! assert (rgb2hsv (single (rgb_double)), single (expected));
|