File: commutation_matrix.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (123 lines) | stat: -rw-r--r-- 3,057 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
########################################################################
##
## Copyright (C) 1995-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn {} {@var{k} =} commutation_matrix (@var{m}, @var{n})
## Return the commutation matrix
## @tex
##  $K_{m,n}$
## @end tex
## @ifnottex
## K(m,n)
## @end ifnottex
## which is the unique
## @tex
##  $m n \times m n$
## @end tex
## @ifnottex
## @var{m}*@var{n} by @var{m}*@var{n}
## @end ifnottex
## matrix such that
## @tex
##  $K_{m,n} \cdot {\rm vec} (A) = {\rm vec} (A^T)$
## @end tex
## @ifnottex
## @math{K(m,n) * vec(A) = vec(A')}
## @end ifnottex
## for all
## @tex
##  $m\times n$
## @end tex
## @ifnottex
## @math{m} by @math{n}
## @end ifnottex
## matrices
## @tex
##  $A$.
## @end tex
## @ifnottex
## @math{A}.
## @end ifnottex
##
## If only one argument @var{m} is given,
## @tex
##  $K_{m,m}$
## @end tex
## @ifnottex
## @math{K(m,m)}
## @end ifnottex
## is returned.
##
## See @nospell{Magnus and Neudecker} (1988), @cite{Matrix Differential
## Calculus with Applications in Statistics and Econometrics}.
## @end deftypefn

function k = commutation_matrix (m, n)

  if (nargin < 1)
    print_usage ();
  else
    if (! (isscalar (m) && m == fix (m) && m > 0))
      error ("commutation_matrix: M must be a positive integer");
    endif
    if (nargin == 1)
      n = m;
    elseif (! (isscalar (n) && n == fix (n) && n > 0))
      error ("commutation_matrix: N must be a positive integer");
    endif
  endif

  ## It is clearly possible to make this a LOT faster!
  k = zeros (m * n, m * n);
  for i = 1 : m
    for j = 1 : n
      k((i - 1) * n + j, (j - 1) * m + i) = 1;
    endfor
  endfor

endfunction


%!test
%! c = commutation_matrix (1,1);
%! assert (c,1);

%!test
%! A = rand (3,5);
%! vc = vec (A);
%! vr = vec (A');
%! c = commutation_matrix (3,5);
%! assert (c*vc, vr);

%!test
%! A = rand (4,6);
%! vc = vec (A);
%! vr = vec (A');
%! c = commutation_matrix (4,6);
%! assert (c*vc, vr);

%!error <M must be a positive integer> commutation_matrix (0,0)
%!error <N must be a positive integer> commutation_matrix (1,0)
%!error <M must be a positive integer> commutation_matrix (0,1)