File: condeig.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (144 lines) | stat: -rw-r--r-- 4,260 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
########################################################################
##
## Copyright (C) 2006-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{c} =} condeig (@var{a})
## @deftypefnx {} {[@var{v}, @var{lambda}, @var{c}] =} condeig (@var{a})
## Compute condition numbers of a matrix with respect to eigenvalues.
##
## The condition numbers are the reciprocals of the cosines of the angles
## between the left and right eigenvectors; Large values indicate that the
## matrix has multiple distinct eigenvalues.
##
## The input @var{a} must be a square numeric matrix.
##
## The outputs are:
##
## @itemize @bullet
## @item
## @var{c} is a vector of condition numbers for the eigenvalues of
## @var{a}.
##
## @item
## @var{v} is the matrix of right eigenvectors of @var{a}.  The result is
## equivalent to calling @code{[@var{v}, @var{lambda}] = eig (@var{a})}.
##
## @item
## @var{lambda} is the diagonal matrix of eigenvalues of @var{a}.  The
## result is equivalent to calling
## @code{[@var{v}, @var{lambda}] = eig (@var{a})}.
## @end itemize
##
## Example
##
## @example
## @group
## a = [1, 2; 3, 4];
## c = condeig (a)
##   @result{} c =
##        1.0150
##        1.0150
## @end group
## @end example
## @seealso{eig, cond, balance}
## @end deftypefn

function [v, lambda, c] = condeig (a)

  if (nargin < 1)
    print_usage ();
  endif

  if (! (isnumeric (a) && issquare (a)))
    error ("condeig: A must be a square numeric matrix");
  endif

  if (issparse (a) && nargout <= 1)
    ## Try to use svds to calculate the condition number as it will typically
    ## be much faster than calling eig as only the smallest and largest
    ## eigenvalue are calculated.

    ## FIXME: This calculates one condition number for the entire matrix.
    ## In the full case, separate condition numbers are calculated for every
    ## eigenvalue.
    try
      s0 = svds (a, 1, 0);    # min eigenvalue
      v = svds (a, 1) / s0;   # max eigenvalue
    catch
      ## Caught an error as there is a singular value exactly at zero!!
      v = Inf;
    end_try_catch
    return;
  endif

  ## Right eigenvectors
  [v, lambda] = eig (a);

  if (isempty (a))
    c = [];
  else
    ## Corresponding left eigenvectors
    ## Use 2-argument form to suppress possible singular matrix warning.
    [vl, ~] = inv (v);
    vl = vl';
    ## Normalize vectors
    vl ./= repmat (sqrt (sum (abs (vl .^ 2))), rows (vl), 1);

    ## Condition numbers
    ## Definition: 1 / cos (angle) = (norm (v1) * norm (v2)) / dot (v1, v2)
    ## Eigenvectors have been normalized so 'norm (v1) * norm (v2)' = 1
    c = abs (1 ./ dot (vl, v)');
  endif

  if (nargout <= 1)
    v = c;
  endif

endfunction


%!test
%! a = [1, 2; 3, 4];
%! c = condeig (a);
%! expected_c = [1.0150; 1.0150];
%! assert (c, expected_c, 0.001);

%!test
%! a = [1, 3; 5, 8];
%! [v, lambda, c] = condeig (a);
%! [expected_v, expected_lambda] = eig (a);
%! expected_c = [1.0182; 1.0182];
%! assert (v, expected_v, 0.001);
%! assert (lambda, expected_lambda, 0.001);
%! assert (c, expected_c, 0.001);

## Test empty input
%!assert (condeig ([]), [])

## Test input validation
%!error <Invalid call> condeig ()
%!error <A must be a square numeric matrix> condeig ({1})
%!error <A must be a square numeric matrix> condeig (ones (3,2))
%!error <A must be a square numeric matrix> condeig (ones (2,2,2))