1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
|
########################################################################
##
## Copyright (C) 2007-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{cest} =} condest (@var{A})
## @deftypefnx {} {@var{cest} =} condest (@var{A}, @var{t})
## @deftypefnx {} {@var{cest} =} condest (@var{A}, @var{Ainvfcn})
## @deftypefnx {} {@var{cest} =} condest (@var{A}, @var{Ainvfcn}, @var{t})
## @deftypefnx {} {@var{cest} =} condest (@var{A}, @var{Ainvfcn}, @var{t}, @var{p1}, @var{p2}, @dots{})
## @deftypefnx {} {@var{cest} =} condest (@var{Afcn}, @var{Ainvfcn})
## @deftypefnx {} {@var{cest} =} condest (@var{Afcn}, @var{Ainvfcn}, @var{t})
## @deftypefnx {} {@var{cest} =} condest (@var{Afcn}, @var{Ainvfcn}, @var{t}, @var{p1}, @var{p2}, @dots{})
## @deftypefnx {} {[@var{cest}, @var{v}] =} condest (@dots{})
##
## Estimate the 1-norm condition number of a square matrix @var{A} using
## @var{t} test vectors and a randomized 1-norm estimator.
##
## The optional input @var{t} specifies the number of test vectors (default 5).
##
## The input may be a matrix @var{A} (the algorithm is particularly
## appropriate for large, sparse matrices). Alternatively, the behavior of
## the matrix can be defined implicitly by functions. When using an implicit
## definition, @code{condest} requires the following functions:
##
## @itemize @minus
## @item @code{@var{Afcn} (@var{flag}, @var{x})} which must return
##
## @itemize @bullet
## @item
## the dimension @var{n} of @var{A}, if @var{flag} is @qcode{"dim"}
##
## @item
## true if @var{A} is a real operator, if @var{flag} is @qcode{"real"}
##
## @item
## the result @code{@var{A} * @var{x}}, if @var{flag} is "notransp"
##
## @item
## the result @code{@var{A}' * @var{x}}, if @var{flag} is "transp"
## @end itemize
##
## @item @code{@var{Ainvfcn} (@var{flag}, @var{x})} which must return
##
## @itemize @bullet
## @item
## the dimension @var{n} of @code{inv (@var{A})}, if @var{flag} is
## @qcode{"dim"}
##
## @item
## true if @code{inv (@var{A})} is a real operator, if @var{flag} is
## @qcode{"real"}
##
## @item
## the result @code{inv (@var{A}) * @var{x}}, if @var{flag} is "notransp"
##
## @item
## the result @code{inv (@var{A})' * @var{x}}, if @var{flag} is "transp"
## @end itemize
## @end itemize
##
## Any parameters @var{p1}, @var{p2}, @dots{} are additional arguments of
## @code{@var{Afcn} (@var{flag}, @var{x}, @var{p1}, @var{p2}, @dots{})}
## and @code{@var{Ainvfcn} (@var{flag}, @var{x}, @var{p1}, @var{p2}, @dots{})}.
##
## The principal output is the 1-norm condition number estimate @var{cest}.
##
## The optional second output @var{v} is an approximate null vector; it
## satisfies the equation @code{norm (@var{A}*@var{v}, 1) ==
## norm (@var{A}, 1) * norm (@var{v}, 1) / @var{cest}}.
##
## Algorithm Note: @code{condest} uses a randomized algorithm to approximate
## the 1-norms. Therefore, if consistent results are required, the
## @qcode{"state"} of the random generator should be fixed before invoking
## @code{condest}.
##
## References:
##
## @itemize
## @item
## @nospell{N.J. Higham and F. Tisseur}, @cite{A Block Algorithm
## for Matrix 1-Norm Estimation, with an Application to 1-Norm
## Pseudospectra}. SIMAX vol 21, no 4, pp 1185--1201.
## @url{https://dx.doi.org/10.1137/S0895479899356080}
##
## @item
## @nospell{N.J. Higham and F. Tisseur}, @cite{A Block Algorithm
## for Matrix 1-Norm Estimation, with an Application to 1-Norm
## Pseudospectra}. @url{https://citeseer.ist.psu.edu/223007.html}
## @end itemize
##
## @seealso{cond, rcond, norm, normest1, normest}
## @end deftypefn
## Code originally licensed under:
##
## Copyright (c) 2007, Regents of the University of California
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions
## are met:
##
## * Redistributions of source code must retain the above copyright
## notice, this list of conditions and the following disclaimer.
##
## * Redistributions in binary form must reproduce the above
## copyright notice, this list of conditions and the following
## disclaimer in the documentation and/or other materials provided
## with the distribution.
##
## * Neither the name of the University of California, Berkeley nor
## the names of its contributors may be used to endorse or promote
## products derived from this software without specific prior
## written permission.
##
## THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
## TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
## PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS AND
## CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
## SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
## LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
## USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
## ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
## OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
## SUCH DAMAGE.
function [cest, v] = condest (varargin)
if (nargin < 1 || nargin > 6)
print_usage ();
endif
have_A = false;
have_t = false;
have_Afcn = false;
have_Ainvfcn = false;
if (isnumeric (varargin{1}))
A = varargin{1};
if (! issquare (A))
error ("condest: A must be square");
endif
have_A = true;
n = rows (A);
if (nargin > 1)
if (is_function_handle (varargin{2}))
Ainvfcn = varargin{2};
have_Ainvfcn = true;
if (nargin > 2)
t = varargin{3};
have_t = true;
endif
else
t = varargin{2};
have_t = true;
endif
endif
elseif (is_function_handle (varargin{1}))
if (nargin == 1)
error ("condest: must provide AINVFCN when using AFCN");
endif
Afcn = varargin{1};
have_Afcn = true;
if (! is_function_handle (varargin{2}))
error ("condest: AINVFCN must be a function handle");
endif
Ainvfcn = varargin{2};
have_Ainvfcn = true;
n = Afcn ("dim", [], varargin{4:end});
if (nargin > 2)
t = varargin{3};
have_t = true;
endif
else
error ("condest: first argument must be a square matrix or function handle");
endif
if (! have_t)
t = min (n, 5);
endif
## Disable warnings which may be emitted during calculation process.
warning ("off", "Octave:nearly-singular-matrix", "local");
if (! have_Ainvfcn)
## Prepare Ainvfcn in normest1 form
if (issparse (A))
[L, U, P, Q] = lu (A);
Ainvfcn = @inv_sparse_fcn;
else
[L, U, P] = lu (A);
Q = [];
Ainvfcn = @inv_full_fcn;
endif
## Check for singular matrices before continuing (bug #46737)
if (any (diag (U) == 0))
cest = Inf;
v = [];
return;
endif
## Initialize solver
Ainvfcn ("init", A, L, U, P, Q);
clear L U P Q;
endif
if (have_A)
Anorm = norm (A, 1);
else
Anorm = normest1 (Afcn, t, [], varargin{4:end});
endif
[Ainv_norm, v, w] = normest1 (Ainvfcn, t, [], varargin{4:end});
cest = Anorm * Ainv_norm;
if (nargout > 1)
v = w / norm (w, 1);
endif
if (! have_Ainvfcn)
Ainvfcn ("clear"); # clear persistent memory in subfunction
endif
endfunction
function retval = inv_sparse_fcn (flag, x, varargin)
## FIXME: Sparse algorithm is less accurate than full matrix version.
## See BIST test for asymmetric matrix where relative tolerance
## of 1e-12 is used for sparse, but 4e-16 for full matrix.
## BUT, does it really matter for an "estimate"?
persistent Ainv Ainvt n isreal_op;
switch (flag)
case "dim"
retval = n;
case "real"
retval = isreal_op;
case "notransp"
retval = Ainv * x;
case "transp"
retval = Ainvt * x;
case "init"
n = rows (x);
isreal_op = isreal (x);
[L, U, P, Q] = deal (varargin{1:4});
Ainv = Q * (U \ (L \ P));
Ainvt = P' * (L' \ (U' \ Q'));
case "clear" # called to free memory at end of condest function
clear Ainv Ainvt n isreal_op;
endswitch
endfunction
function retval = inv_full_fcn (flag, x, varargin)
persistent Ainv Ainvt n isreal_op;
switch (flag)
case "dim"
retval = n;
case "real"
retval = isreal_op;
case "notransp"
retval = Ainv * x;
case "transp"
retval = Ainvt \ x;
case "init"
n = rows (x);
isreal_op = isreal (x);
[L, U, P] = deal (varargin{1:3});
Ainv = U \ (L \ P);
Ainvt = P' * (L' \ U');
case "clear" # called to free memory at end of condest function
clear Ainv Ainvt n isreal_op;
endswitch
endfunction
## Note: These test bounds are very loose. There is enough randomization to
## trigger odd cases with hilb().
%!function retval = __Afcn__ (flag, x, A, m)
%! if (nargin == 3)
%! m = 1;
%! endif
%! switch (flag)
%! case "dim"
%! retval = length (A);
%! case "real"
%! retval = isreal (A);
%! case "notransp"
%! retval = x; for i = 1:m, retval = A * retval;, endfor
%! case "transp"
%! retval = x; for i = 1:m, retval = A' * retval;, endfor
%! endswitch
%!endfunction
%!function retval = __Ainvfcn__ (flag, x, A, m)
%! if (nargin == 3)
%! m = 1;
%! endif
%! switch (flag)
%! case "dim"
%! retval = length (A);
%! case "real"
%! retval = isreal (A);
%! case "notransp"
%! retval = x; for i = 1:m, retval = A \ retval;, endfor
%! case "transp"
%! retval = x; for i = 1:m, retval = A' \ retval;, endfor
%! endswitch
%!endfunction
%!test
%! N = 6;
%! A = hilb (N);
%! cA = condest (A);
%! cA_test = norm (inv (A), 1) * norm (A, 1);
%! assert (cA, cA_test, -2^-8);
%!test
%! N = 12;
%! A = hilb (N);
%! [~, v] = condest (A);
%! x = A*v;
%! assert (norm (x, inf), 0, eps);
%!test
%! N = 6;
%! A = hilb (N);
%! Ainvfcn = @(flag, x) __Ainvfcn__ (flag, x, A);
%! cA = condest (A, Ainvfcn);
%! cA_test = norm (inv (A), 1) * norm (A, 1);
%! assert (cA, cA_test, -2^-6);
%!test
%! N = 6;
%! A = hilb (N);
%! Afcn = @(flag, x) __Afcn__ (flag, x, A);
%! Ainvfcn = @(flag, x) __Ainvfcn__ (flag, x, A);
%! cA = condest (Afcn, Ainvfcn);
%! cA_test = norm (inv (A), 1) * norm (A, 1);
%! assert (cA, cA_test, -2^-6);
%!test # parameters for apply and Ainvfcn functions
%! N = 6;
%! A = hilb (N);
%! m = 2;
%! cA = condest (@__Afcn__, @__Ainvfcn__, [], A, m);
%! cA_test = norm (inv (A^2), 1) * norm (A^2, 1);
%! assert (cA, cA_test, -2^-6);
## Test singular matrices
%!test <*46737>
%! A = [ 0 0 0
%! 0 3.33333 0.0833333
%! 0 0.0833333 1.66667];
%! [cest, v] = condest (A);
%! assert (cest, Inf);
%! assert (v, []);
## Test asymmetric matrices
%!test <*57968>
%! A = reshape (sqrt (0:15), 4, 4);
%! cexp = norm (A, 1) * norm (inv (A), 1);
%! cest = condest (A);
%! assert (cest, cexp, -2*eps);
%!testif HAVE_UMFPACK <*57968>
%! As = sparse (reshape (sqrt (0:15), 4, 4));
%! cexp = norm (As, 1) * norm (inv (As), 1);
%! cest = condest (As);
%! assert (cest, cexp, -1e-12);
## Test input validation
%!error <Invalid call> condest ()
%!error <Invalid call> condest (1,2,3,4,5,6,7)
%!error <A must be square> condest ([1, 2])
%!error <must provide AINVFCN when using AFCN> condest (@sin)
%!error <AINVFCN must be a function handle> condest (@sin, 1)
%!error <argument must be a square matrix or function handle> condest ({1})
|