1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
########################################################################
##
## Copyright (C) 1995-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{z} =} cross (@var{x}, @var{y})
## @deftypefnx {} {@var{z} =} cross (@var{x}, @var{y}, @var{dim})
## Compute the vector cross product of two 3-dimensional vectors @var{x} and
## @var{y}.
##
## If @var{x} and @var{y} are arrays, the cross product is applied along the
## first dimension with three elements.
##
## The optional argument @var{dim} forces the cross product to be calculated
## along the specified dimension. An error will be produced if the specified
## dimension is not three elements in size.
##
## Example Code:
##
## @example
## @group
## cross ([1, 1, 0], [0, 1, 1])
## @result{}
## 1 -1 1
## @end group
## @end example
##
## @example
## @group
## cross (magic (3), eye (3), 2)
## @result{}
## 0 6 -1
## -7 0 3
## 9 -4 0
## @end group
## @end example
##
## @seealso{dot, curl, divergence}
## @end deftypefn
function z = cross (x, y, dim)
if (nargin < 2)
print_usage ();
endif
nd = ndims (x);
if (nargin < 3 && nd < 3 && ndims (y) < 3)
## COMPATIBILITY -- opposite behavior for cross(row,col)
## Swap x and y in the assignments below to get the matlab behavior.
## Better yet, fix the calling code so that it uses conformant vectors.
if (columns (x) == 1 && rows (y) == 1)
warning ("cross: taking cross product of column by row");
y = y.';
elseif (rows (x) == 1 && columns (y) == 1)
warning ("cross: taking cross product of row by column");
x = x.';
endif
endif
sz = size (x);
if (nargin == 2)
dim = find (sz == 3, 1);
if (isempty (dim))
error ("cross: must have at least one dimension with 3 elements");
endif
else
if (! (isnumeric (dim) && dim > 0 && isreal (dim) && ...
isscalar (dim) && dim == fix (dim)))
error ("cross: DIM must be a positive scalar whole number");
endif
if (dim > nd || sz(dim) != 3 || ...
dim > ndims (y) || size (y, dim) != 3)
error ("cross: X and Y must have three elements in dimension DIM");
endif
endif
idx2 = idx3 = idx1 = {':'}(ones (1, nd));
idx1(dim) = 1;
idx2(dim) = 2;
idx3(dim) = 3;
if (size_equal (x, y))
x1 = x(idx1{:});
x2 = x(idx2{:});
x3 = x(idx3{:});
y1 = y(idx1{:});
y2 = y(idx2{:});
y3 = y(idx3{:});
z = cat (dim, (x2.*y3 - x3.*y2), (x3.*y1 - x1.*y3), (x1.*y2 - x2.*y1));
else
error ("cross: X and Y must have the same dimensions");
endif
endfunction
%!test
%! x = [1, 0, 0];
%! y = [0, 1, 0];
%! r = [0, 0, 1];
%! assert (cross (x, y), r, eps);
%!test
%! x = [1, 2, 3];
%! y = [4, 5, 6];
%! r = [(2*6-3*5), (3*4-1*6), (1*5-2*4)];
%! assert (cross (x, y), r, eps);
%!test
%! x = [1, 0, 0; 0, 1, 0; 0, 0, 1];
%! y = [0, 1, 0; 0, 0, 1; 1, 0, 0];
%! r = [0, 0, 1; 1, 0, 0; 0, 1, 0];
%! assert (cross (x, y, 2), r, eps);
%! assert (cross (x, y, 1), -r, eps);
## Test input validation
%!error <Invalid call> cross ()
%!error <Invalid call> cross (1)
%!error <must have at least one dimension with 3 elements> cross (0, 0)
%!error <must have at least one dimension with 3 elements> cross ([1, 2], [3, 4])
%!error <must have at least one dimension with 3 elements> cross ([1, 2], [3, 4, 5])
%!error <X and Y must have three elements in dimension DIM> cross (0, 0, 1)
%!error <X and Y must have three elements in dimension DIM> cross ([1, 2, 3], [1, 2, 3], 1)
%!error <X and Y must have three elements in dimension DIM> cross ([1, 2, 3], [1, 2, 3], 9)
%!error <X and Y must have three elements in dimension DIM> cross (magic (3), magic (3), 4)
%!error <DIM must be a positive scalar whole number> cross ([1, 2, 3], [4, 5, 6], {1})
%!error <DIM must be a positive scalar whole number> cross ([1, 2, 3], [4, 5, 6], "a")
%!error <DIM must be a positive scalar whole number> cross ([1, 2, 3], [4, 5, 6], true)
%!error <DIM must be a positive scalar whole number> cross ([1, 2, 3], [4, 5, 6], [1, 2])
%!error <DIM must be a positive scalar whole number> cross ([1, 2, 3], [4, 5, 6], 0)
%!error <DIM must be a positive scalar whole number> cross ([1, 2, 3], [4, 5, 6], -1)
%!error <DIM must be a positive scalar whole number> cross ([1, 2, 3], [4, 5, 6], 1.5)
%!error <DIM must be a positive scalar whole number> cross ([1, 2, 3], [4, 5, 6], 2i)
%!error <X and Y must have the same dimensions> cross ([1, 2, 3], [3, 4])
%!warning <taking cross product of column by row> cross ([1, 2, 3]', [4, 5, 6]);
%!warning <taking cross product of row by column> cross ([1, 2, 3], [4, 5, 6]');
%!test
%! x = cat (3, [1, 1, 1]', [1, 1, 1]');
%! y = cat (3, [1, 0, 0], [1, 0, 0]);
%! fail ("cross (x, y)", "X and Y must have the same dimensions");
%! fail ("cross (y, x)", "X and Y must have the same dimensions");
|