1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
########################################################################
##
## Copyright (C) 2008-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{r} =} expm (@var{A})
## Return the exponential of a matrix.
##
## The matrix exponential is defined as the infinite Taylor series
## @tex
## $$
## \exp (A) = I + A + {A^2 \over 2!} + {A^3 \over 3!} + \cdots
## $$
## @end tex
## @ifnottex
##
## @example
## expm (A) = I + A + A^2/2! + A^3/3! + @dots{}
## @end example
##
## @end ifnottex
## However, the Taylor series is @emph{not} the way to compute the matrix
## exponential; see @nospell{Moler and Van Loan}, @cite{Nineteen Dubious Ways
## to Compute the Exponential of a Matrix}, SIAM Review, 1978. This routine
## uses Ward's diagonal Pad@'e approximation method with three step
## preconditioning (SIAM Journal on Numerical Analysis, 1977). Diagonal
## Pad@'e approximations are rational polynomials of matrices
## @tex
## $D_q(A)^{-1}N_q(A)$
## @end tex
## @ifnottex
##
## @example
## @group
## -1
## D (A) N (A)
## @end group
## @end example
##
## @end ifnottex
## whose Taylor series matches the first
## @tex
## $2 q + 1 $
## @end tex
## @ifnottex
## @code{2q+1}
## @end ifnottex
## terms of the Taylor series above; direct evaluation of the Taylor series
## (with the same preconditioning steps) may be desirable in lieu of the
## Pad@'e approximation when
## @tex
## $D_q(A)$
## @end tex
## @ifnottex
## @code{Dq(A)}
## @end ifnottex
## is ill-conditioned.
## @seealso{logm, sqrtm}
## @end deftypefn
function r = expm (A)
if (nargin < 1)
print_usage ();
endif
if (! isnumeric (A) || ! issquare (A))
error ("expm: A must be a square matrix");
endif
if (isempty (A))
r = A;
return;
elseif (isscalar (A))
r = exp (A);
return;
elseif (isdiag (A))
r = diag (exp (diag (A)));
return;
endif
n = rows (A);
id = eye (n);
## Trace reduction.
A(A == -Inf) = -realmax ();
trshift = trace (A) / n;
if (trshift > 0)
A -= trshift * id;
endif
## Balancing.
[d, p, aa] = balance (A);
[~, e] = log2 (norm (aa, "inf"));
s = max (0, e);
s = min (s, 1023);
aa *= 2^(-s);
## Pade approximation for exp(A).
c = [5.0000000000000000e-1, ...
1.1666666666666667e-1, ...
1.6666666666666667e-2, ...
1.6025641025641026e-3, ...
1.0683760683760684e-4, ...
4.8562548562548563e-6, ...
1.3875013875013875e-7, ...
1.9270852604185938e-9];
a2 = aa^2;
x = (((c(8) * a2 + c(6) * id) * a2 + c(4) * id) * a2 + c(2) * id) * a2 + id;
y = (((c(7) * a2 + c(5) * id) * a2 + c(3) * id) * a2 + c(1) * id) * aa;
r = (x - y) \ (x + y);
## Undo scaling by repeated squaring.
for k = 1:s
r ^= 2;
endfor
## inverse balancing.
d = diag (d);
r = d * r / d;
r(p, p) = r;
## Inverse trace reduction.
if (trshift > 0)
r *= exp (trshift);
endif
endfunction
%!assert (norm (expm ([1 -1;0 1]) - [e -e; 0 e]) < 1e-5)
%!assert (expm ([1 -1 -1;0 1 -1; 0 0 1]), [e -e -e/2; 0 e -e; 0 0 e], 1e-5)
%!assert (expm ([]), [])
%!assert (expm (10), exp (10))
%!assert (full (expm (eye (3))), expm (full (eye (3))))
%!assert (full (expm (10*eye (3))), expm (full (10*eye (3))), 8*eps)
%!assert (expm (zeros (3)), eye (3))
## Test input validation
%!error <Invalid call> expm ()
%!error <expm: A must be a square matrix> expm ({1})
%!error <expm: A must be a square matrix> expm ([1 0;0 1; 2 2])
|