1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
########################################################################
##
## Copyright (C) 1996-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {[@var{beta}, @var{v}, @var{r}] =} gls (@var{y}, @var{x}, @var{o})
## Generalized least squares (GLS) model.
##
## Perform a generalized least squares estimation for the multivariate model
## @tex
## $@var{y} = @var{x}\,@var{b} + @var{e}$
## @end tex
## @ifnottex
## @w{@math{@var{y} = @var{x}*@var{B} + @var{E}}}
## @end ifnottex
## where
## @tex
## $@var{y}$ is a $t \times p$ matrix, $@var{x}$ is a $t \times k$ matrix,
## $@var{b}$ is a $k \times p$ matrix and $@var{e}$ is a $t \times p$ matrix.
## @end tex
## @ifnottex
## @var{y} is a @math{t}-by-@math{p} matrix, @var{x} is a
## @math{t}-by-@math{k} matrix, @var{b} is a @math{k}-by-@math{p} matrix
## and @var{e} is a @math{t}-by-@math{p} matrix.
## @end ifnottex
##
## @noindent
## Each row of @var{y} is a @math{p}-variate observation in which each column
## represents a variable. Likewise, the rows of @var{x} represent
## @math{k}-variate observations or possibly designed values. Furthermore,
## the collection of observations @var{x} must be of adequate rank, @math{k},
## otherwise @var{b} cannot be uniquely estimated.
##
## The observation errors, @var{e}, are assumed to originate from an
## underlying @math{p}-variate distribution with zero mean but possibly
## heteroscedastic observations. That is, in general,
## @tex
## $\bar{@var{e}} = 0$ and cov(vec(@var{e})) = $s^2@var{o}$
## @end tex
## @ifnottex
## @code{@math{mean (@var{e}) = 0}} and
## @code{@math{cov (vec (@var{e})) = (@math{s}^2)*@var{o}}}
## @end ifnottex
## in which @math{s} is a scalar and @var{o} is a
## @tex
## @math{t \, p \times t \, p}
## @end tex
## @ifnottex
## @math{t*p}-by-@math{t*p}
## @end ifnottex
## matrix.
##
## The return values @var{beta}, @var{v}, and @var{r} are
## defined as follows.
##
## @table @var
## @item beta
## The GLS estimator for matrix @var{b}.
##
## @item v
## The GLS estimator for scalar @math{s^2}.
##
## @item r
## The matrix of GLS residuals, @math{@var{r} = @var{y} - @var{x}*@var{beta}}.
## @end table
## @seealso{ols}
## @end deftypefn
function [beta, v, r] = gls (y, x, o)
if (nargin != 3)
print_usage ();
endif
if (! (isnumeric (x) && isnumeric (y) && isnumeric (o)))
error ("gls: X, Y, and O must be numeric matrices or vectors");
endif
if (ndims (x) != 2 || ndims (y) != 2 || ndims (o) != 2)
error ("gls: X, Y and O must be 2-D matrices or vectors");
endif
[rx, cx] = size (x);
[ry, cy] = size (y);
[ro, co] = size (o);
if (rx != ry)
error ("gls: number of rows of X and Y must be equal");
endif
if (! issquare (o) || ro != ry*cy)
error ("gls: matrix O must be square matrix with rows = rows (Y) * cols (Y)");
endif
if (isinteger (x))
x = double (x);
endif
if (isinteger (y))
y = double (y);
endif
if (isinteger (o))
o = double (o);
endif
## Start of algorithm
o ^= -1/2;
z = kron (eye (cy), x);
z = o * z;
y1 = o * reshape (y, ry*cy, 1);
u = z' * z;
r = rank (u);
if (r == cx*cy)
b = inv (u) * z' * y1;
else
b = pinv (z) * y1;
endif
beta = reshape (b, cx, cy);
if (nargout > 1)
r = y - x * beta;
v = (reshape (r, ry*cy, 1))' * (o^2) * reshape (r, ry*cy, 1) / (rx*cy - r);
endif
endfunction
%!test
%! x = [1:5]';
%! y = 3*x + 2;
%! x = [x, ones(5,1)];
%! o = diag (ones (5,1));
%! assert (gls (y,x,o), [3; 2], 50*eps);
## Test input validation
%!error <Invalid call> gls ()
%!error <Invalid call> gls (1)
%!error <Invalid call> gls (1, 2)
%!error gls ([true, true], [1, 2], ones (2))
%!error gls ([1, 2], [true, true], ones (2))
%!error gls ([1, 2], [1, 2], true (2))
%!error gls (ones (2,2,2), ones (2,2), ones (4,4))
%!error gls (ones (2,2), ones (2,2,2), ones (4,4))
%!error gls (ones (2,2), ones (2,2), ones (4,4,4))
%!error gls (ones (1,2), ones (2,2), ones (2,2))
%!error gls (ones (2,2), ones (2,2), ones (2,2))
|