1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
########################################################################
##
## Copyright (C) 1996-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{tf} =} ishermitian (@var{A})
## @deftypefnx {} {@var{tf} =} ishermitian (@var{A}, @var{tol})
## @deftypefnx {} {@var{tf} =} ishermitian (@var{A}, @qcode{"skew"})
## @deftypefnx {} {@var{tf} =} ishermitian (@var{A}, @qcode{"skew"}, @var{tol})
## Return true if @var{A} is a Hermitian or skew-Hermitian numeric matrix
## within the tolerance specified by @var{tol}.
##
## The default tolerance is zero (uses faster code).
##
## The type of symmetry to check may be specified with the additional input
## @qcode{"nonskew"} (default) for regular Hermitian or @qcode{"skew"} for
## skew-Hermitian.
##
## Background: A matrix is Hermitian if the complex conjugate transpose of the
## matrix is equal to the original matrix: @w{@tcode{@var{A} == @var{A}'}}. If
## a tolerance is given then the calculation is
## @code{norm (@var{A} - @var{A}', Inf) / norm (@var{A}, Inf) < @var{tol}}.
##
## A matrix is skew-Hermitian if the complex conjugate transpose of the matrix
## is equal to the negative of the original matrix:
## @w{@tcode{@var{A} == -@var{A}'}}. If a
## tolerance is given then the calculation is
## @code{norm (@var{A} + @var{A}', Inf) / norm (@var{A}, Inf) < @var{tol}}.
## @seealso{issymmetric, isdefinite}
## @end deftypefn
function tf = ishermitian (A, skewopt = "nonskew", tol = 0)
if (nargin < 1)
print_usage ();
endif
if (nargin == 2)
## Decode whether second argument is skewopt or tol
if (isnumeric (skewopt))
tol = skewopt;
skewopt = "nonskew";
elseif (! ischar (skewopt))
error ("ishermitian: second argument must be a non-negative scalar TOL, or one of the strings: 'skew' / 'nonskew'");
endif
endif
## Validate inputs
tf = (isnumeric (A) || islogical (A)) && issquare (A);
if (! tf)
return;
endif
if (! (strcmp (skewopt, "skew") || strcmp (skewopt, "nonskew")))
error ("ishermitian: SKEWOPT must be 'skew' or 'nonskew'");
endif
if (! (isnumeric (tol) && isscalar (tol) && tol >= 0))
error ("ishermitian: TOL must be a scalar >= 0");
endif
## Calculate Hermitian-ness
if (strcmp (skewopt, "nonskew"))
if (tol == 0)
## check for exact symmetry
tf = full (! any ((A != A')(:)));
else
if (islogical (A))
## Hack to allow norm to work. Choose single to minimize memory.
A = single (A);
endif
norm_x = norm (A, Inf);
tf = norm_x == 0 || norm (A - A', Inf) / norm_x <= tol;
endif
else
## skew-Hermitian
if (tol == 0)
tf = full (! any ((A != -A')(:)));
else
if (islogical (A))
## Hack to allow norm to work. Choose single to minimize memory.
A = single (A);
endif
norm_x = norm (A, Inf);
tf = norm_x == 0 || norm (A + A', Inf) / norm_x <= tol;
endif
endif
endfunction
%!assert (ishermitian (1))
%!assert (! ishermitian ([1, 2]))
%!assert (ishermitian ([]))
%!assert (ishermitian ([1, 2; 2, 1]))
%!assert (ishermitian ([1, 2.1; 2, 1.1], 0.2))
%!assert (ishermitian ([1, -2i; 2i, 1]))
%!assert (ishermitian (speye (100)), true) # Return full logical value.
%!assert (ishermitian (logical (eye (2))))
%!assert (! ishermitian (logical ([1 1; 0 1])))
%!assert (ishermitian (logical ([1 1; 0 1]), 0.5))
%!assert (ishermitian ([0, 2i; 2i, 0], "skew"))
%!assert (! ishermitian ([0, 2; -2, eps], "skew"))
%!assert (ishermitian ([0, 2; -2, eps], "skew", eps))
%!assert (! (ishermitian ("test")))
%!assert (! (ishermitian ("t")))
%!assert (! (ishermitian (["te"; "et"])))
%!assert (! ishermitian ({1}))
%!test
%! s.a = 1;
%! assert (! ishermitian (s));
## Test input validation
%!error <Invalid call> ishermitian ()
%!error <second argument must be> ishermitian (1, {"skew"})
%!error <SKEWOPT must be 'skew' or 'nonskew'> ishermitian (1, "foobar")
%!error <SKEWOPT must be 'skew' or 'nonskew'> ishermitian (1, "foobar")
%!error <TOL must be a scalar .= 0> ishermitian (1, "skew", {1})
%!error <TOL must be a scalar .= 0> ishermitian (1, "skew", [1 1])
%!error <TOL must be a scalar .= 0> ishermitian (1, -1)
|