File: issymmetric.m

package info (click to toggle)
octave 9.4.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 144,300 kB
  • sloc: cpp: 332,784; ansic: 77,239; fortran: 20,963; objc: 9,396; sh: 8,213; yacc: 4,925; lex: 4,389; perl: 1,544; java: 1,366; awk: 1,259; makefile: 648; xml: 189
file content (141 lines) | stat: -rw-r--r-- 5,134 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
########################################################################
##
## Copyright (C) 1996-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################

## -*- texinfo -*-
## @deftypefn  {} {@var{tf} =} issymmetric (@var{A})
## @deftypefnx {} {@var{tf} =} issymmetric (@var{A}, @var{tol})
## @deftypefnx {} {@var{tf} =} issymmetric (@var{A}, @qcode{"skew"})
## @deftypefnx {} {@var{tf} =} issymmetric (@var{A}, @qcode{"skew"}, @var{tol})
## Return true if @var{A} is a symmetric or skew-symmetric numeric matrix
## within the tolerance specified by @var{tol}.
##
## The default tolerance is zero (uses faster code).
##
## The type of symmetry to check may be specified with the additional input
## @qcode{"nonskew"} (default) for regular symmetry or @qcode{"skew"} for
## skew-symmetry.
##
## Background: A matrix is symmetric if the transpose of the matrix is equal
## to the original matrix: @w{@tcode{@var{A} == @var{A}.'}}.  If a tolerance
## is given then symmetry is determined by
## @code{norm (@var{A} - @var{A}.', Inf) / norm (@var{A}, Inf) < @var{tol}}.
##
## A matrix is skew-symmetric if the transpose of the matrix is equal to the
## negative of the original matrix: @w{@tcode{@var{A} == -@var{A}.'}}.  If a
## tolerance is given then skew-symmetry is determined by
## @code{norm (@var{A} + @var{A}.', Inf) / norm (@var{A}, Inf) < @var{tol}}.
## @seealso{ishermitian, isdefinite}
## @end deftypefn

function tf = issymmetric (A, skewopt = "nonskew", tol = 0)

  if (nargin < 1)
    print_usage ();
  endif

  if (nargin == 2)
    ## Decode whether second argument is skewopt or tol
    if (isnumeric (skewopt))
      tol = skewopt;
      skewopt = "nonskew";
    elseif (! ischar (skewopt))
      error ("issymmetric: second argument must be a non-negative scalar TOL, or one of the strings: 'skew' / 'nonskew'");
    endif
  endif

  ## Validate inputs
  if (! (isnumeric (A) || islogical (A) || ischar (A)))
    error ("issymmetric: A must be a numeric, logical, or character matrix");
  endif

  if (! (strcmp (skewopt, "skew") || strcmp (skewopt, "nonskew")))
    error ("issymmetric: SKEWOPT must be 'skew' or 'nonskew'");
  endif

  if (! (isnumeric (tol) && isscalar (tol) && tol >= 0))
    error ("issymmetric: TOL must be a scalar >= 0");
  endif

  if (! issquare (A))
    tf = false;
    return;
  endif

  ## Calculate symmetry
  if (strcmp (skewopt, "nonskew"))
    if (tol == 0)
      ## check for exact symmetry
      tf = full (! any ((A != A.')(:)));
    else
      if (! isnumeric (A))
        ## Hack to allow norm to work.  Choose single to minimize memory.
        A = single (A);
      endif
      norm_x = norm (A, Inf);
      tf = norm_x == 0 || norm (A - A.', Inf) / norm_x <= tol;
    endif
  else
    ## skew symmetry
    if (tol == 0)
      tf = full (! any ((A != -A.')(:)));
    else
      if (! isnumeric (A))
        ## Hack to allow norm to work.  Choose single to minimize memory.
        A = single (A);
      endif
      norm_x = norm (A, Inf);
      tf = norm_x == 0 || norm (A + A.', Inf) / norm_x <= tol;
    endif
  endif

endfunction


%!assert (issymmetric (1))
%!assert (! issymmetric ([1, 2]))
%!assert (issymmetric ([]))
%!assert (issymmetric ([1, 2; 2, 1]))
%!assert (issymmetric ([1, 2.1; 2, 1.1], 0.2))
%!assert (issymmetric ([1, 2i; 2i, 1]))
%!assert (issymmetric (speye (100)), true)  # Return full logical value.
%!assert (! issymmetric ([0, 2; -2, 0], "nonskew"))
%!assert (issymmetric ([0, 2; -2, 0], "skew"))
%!assert (! issymmetric ([0, 2; -2, eps], "skew"))
%!assert (issymmetric ([0, 2; -2, eps], "skew", eps))
%!assert (issymmetric (logical (eye (2))))
%!assert (! issymmetric (logical ([1 1; 0 1])))
%!assert (issymmetric (logical ([1 1; 0 1]), 0.5))
%!assert (! issymmetric ("test"))
%!assert (issymmetric ("t"))
%!assert (issymmetric (["te"; "et"]))

## Test input validation
%!error <Invalid call> issymmetric ()
%!error <second argument must be> issymmetric (1, {"skew"})
%!error <A must be a numeric,.* matrix> issymmetric ({1})
%!error <SKEWOPT must be 'skew' or 'nonskew'> issymmetric (1, "foobar")
%!error <TOL must be a scalar .= 0> issymmetric (1, "skew", {1})
%!error <TOL must be a scalar .= 0> issymmetric (1, "skew", [1 1])
%!error <TOL must be a scalar .= 0> issymmetric (1, -1)