1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
########################################################################
##
## Copyright (C) 2008-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{s} =} logm (@var{A})
## @deftypefnx {} {@var{s} =} logm (@var{A}, @var{opt_iters})
## @deftypefnx {} {[@var{s}, @var{iters}] =} logm (@dots{})
## Compute the matrix logarithm of the square matrix @var{A}.
##
## The implementation utilizes a Pad@'e approximant and the identity
##
## @example
## logm (@var{A}) = 2^k * logm (@var{A}^(1 / 2^k))
## @end example
##
## The optional input @var{opt_iters} is the maximum number of square roots
## to compute and defaults to 100.
##
## The optional output @var{iters} is the number of square roots actually
## computed.
## @seealso{expm, sqrtm}
## @end deftypefn
## Reference: N. J. Higham, Functions of Matrices: Theory and Computation
## (SIAM, 2008.)
##
## Author: N. J. Higham
## Author: Richard T. Guy <guyrt7@wfu.edu>
function [s, iters] = logm (A, opt_iters = 100)
if (nargin == 0)
print_usage ();
endif
if (! issquare (A))
error ("logm: A must be a square matrix");
endif
if (isscalar (A))
s = log (A);
return;
elseif (isdiag (A))
s = diag (log (diag (A)));
return;
endif
[u, s] = schur (A);
if (isreal (A))
[u, s] = rsf2csf (u, s);
endif
eigv = diag (s);
n = rows (A);
tol = n * eps (max (abs (eigv)));
real_neg_eigv = (real (eigv) < -tol) & (imag (eigv) <= tol);
if (any (real_neg_eigv))
warning ("Octave:logm:non-principal",
"logm: principal matrix logarithm is not defined for matrices with negative eigenvalues; computing non-principal logarithm");
endif
real_eig = ! any (real_neg_eigv);
if (max (abs (triu (s,1))(:)) < tol)
## Will run for Hermitian matrices as Schur decomposition is diagonal.
## This way is faster and more accurate but only works on a diagonal matrix.
logeigv = log (eigv);
logeigv(isinf (logeigv)) = -log (realmax ());
s = u * diag (logeigv) * u';
iters = 0;
else
k = 0;
## Algorithm 11.9 in "Function of matrices", by N. Higham
theta = [0, 0, 1.61e-2, 5.38e-2, 1.13e-1, 1.86e-1, 2.6429608311114350e-1];
p = 0;
m = 7;
while (k < opt_iters)
tau = norm (s - eye (n), 1);
if (tau <= theta (7))
p += 1;
j(1) = find (tau <= theta, 1);
j(2) = find (tau / 2 <= theta, 1);
if (j(1) - j(2) <= 1 || p == 2)
m = j(1);
break;
endif
endif
k += 1;
s = sqrtm (s);
endwhile
if (k >= opt_iters)
warning ("logm: maximum number of square roots exceeded; results may still be accurate");
endif
s -= eye (n);
if (m > 1)
s = logm_pade_pf (s, m);
endif
s = 2^k * u * s * u';
if (nargout == 2)
iters = k;
endif
endif
## Remove small complex values (O(eps)) which may have entered calculation
if (real_eig && isreal (A))
s = real (s);
endif
endfunction
################## ANCILLARY FUNCTIONS ################################
###### Taken from the mfttoolbox (GPL 3) by D. Higham.
###### Reference:
###### D. Higham, Functions of Matrices: Theory and Computation
###### (SIAM, 2008.).
#######################################################################
## LOGM_PADE_PF Evaluate Pade approximant to matrix log by partial fractions.
## Y = LOGM_PADE_PF(A,M) evaluates the [M/M] Pade approximation to
## LOG(EYE(SIZE(A))+A) using a partial fraction expansion.
function s = logm_pade_pf (A, m)
[nodes, wts] = gauss_legendre (m);
## Convert from [-1,1] to [0,1].
nodes = (nodes+1)/2;
wts /= 2;
n = length (A);
s = zeros (n);
for j = 1:m
s += wts(j)*(A/(eye (n) + nodes(j)*A));
endfor
endfunction
######################################################################
## GAUSS_LEGENDRE Nodes and weights for Gauss-Legendre quadrature.
## [X,W] = GAUSS_LEGENDRE(N) computes the nodes X and weights W
## for N-point Gauss-Legendre quadrature.
## Reference:
## G. H. Golub and J. H. Welsch, Calculation of Gauss quadrature
## rules, Math. Comp., 23(106):221-230, 1969.
function [x, w] = gauss_legendre (n)
i = 1:n-1;
v = i./sqrt ((2*i).^2-1);
[V, D] = eig (diag (v, -1) + diag (v, 1));
x = diag (D);
w = 2*(V(1,:)'.^2);
endfunction
%!assert (norm (logm ([1 -1;0 1]) - [0 -1; 0 0]) < 1e-5)
%!test
%! warning ("off", "Octave:logm:non-principal", "local");
%! assert (norm (expm (logm ([-1 2 ; 4 -1])) - [-1 2 ; 4 -1]) < 1e-5);
%!assert (logm ([1 -1 -1;0 1 -1; 0 0 1]), [0 -1 -1.5; 0 0 -1; 0 0 0], 1e-5)
%!assert (logm (10), log (10))
%!assert (full (logm (eye (3))), logm (full (eye (3))))
%!assert (full (logm (10*eye (3))), logm (full (10*eye (3))), 8*eps)
%!assert (logm (expm ([0 1i; -1i 0])), [0 1i; -1i 0], 10 * eps)
%!test <*60738>
%! A = [0.2510, 1.2808, -1.2252; ...
%! 0.2015, 1.0766, 0.5630; ...
%! -1.9769, -1.0922, -0.5831];
%! if (__have_feature__ ("LLVM_LIBCXX"))
%! ## The math libraries in libc++ seem to require larger tolerances
%! tol = 65*eps;
%! else
%! tol = 40*eps;
%! endif
%! warning ("off", "Octave:logm:non-principal", "local");
%! assert (expm (logm (A)), A, tol);
%!assert (expm (logm (eye (3))), eye (3))
%!assert (expm (logm (zeros (3))), zeros (3))
## Test input validation
%!error <Invalid call> logm ()
%!error <logm: A must be a square matrix> logm ([1 0;0 1; 2 2])
|