1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
|
########################################################################
##
## Copyright (C) 2016-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{nest} =} normest1 (@var{A})
## @deftypefnx {} {@var{nest} =} normest1 (@var{A}, @var{t})
## @deftypefnx {} {@var{nest} =} normest1 (@var{A}, @var{t}, @var{x0})
## @deftypefnx {} {@var{nest} =} normest1 (@var{Afcn}, @var{t}, @var{x0}, @var{p1}, @var{p2}, @dots{})
## @deftypefnx {} {[@var{nest}, @var{v}] =} normest1 (@var{A}, @dots{})
## @deftypefnx {} {[@var{nest}, @var{v}, @var{w}] =} normest1 (@var{A}, @dots{})
## @deftypefnx {} {[@var{nest}, @var{v}, @var{w}, @var{iter}] =} normest1 (@var{A}, @dots{})
## Estimate the 1-norm of the matrix @var{A} using a block algorithm.
##
## @code{normest1} is best for large sparse matrices where only an estimate of
## the norm is required. For small to medium sized matrices, consider using
## @code{norm (@var{A}, 1)}. In addition, @code{normest1} can be used for the
## estimate of the 1-norm of a linear operator @var{A} when matrix-vector
## products @code{@var{A} * @var{x}} and @code{@var{A}' * @var{x}} can be
## cheaply computed. In this case, instead of the matrix @var{A}, a function
## @code{@var{Afcn} (@var{flag}, @var{x})} is used; it must return:
##
## @itemize @bullet
## @item
## the dimension @var{n} of @var{A}, if @var{flag} is @qcode{"dim"}
##
## @item
## true if @var{A} is a real operator, if @var{flag} is @qcode{"real"}
##
## @item
## the result @code{@var{A} * @var{x}}, if @var{flag} is @qcode{"notransp"}
##
## @item
## the result @code{@var{A}' * @var{x}}, if @var{flag} is @qcode{"transp"}
## @end itemize
##
## A typical case is @var{A} defined by @code{@var{b} ^ @var{m}}, in which the
## result @code{@var{A} * @var{x}} can be computed without even forming
## explicitly @code{@var{b} ^ @var{m}} by:
##
## @example
## @group
## @var{y} = @var{x};
## for @var{i} = 1:@var{m}
## @var{y} = @var{b} * @var{y};
## endfor
## @end group
## @end example
##
## The parameters @var{p1}, @var{p2}, @dots{} are arguments of
## @code{@var{Afcn} (@var{flag}, @var{x}, @var{p1}, @var{p2}, @dots{})}.
##
## The default value for @var{t} is 2. The algorithm requires matrix-matrix
## products with sizes @var{n} x @var{n} and @var{n} x @var{t}.
##
## The initial matrix @var{x0} should have columns of unit 1-norm. The default
## initial matrix @var{x0} has the first column
## @code{ones (@var{n}, 1) / @var{n}} and, if @var{t} > 1, the remaining
## columns with random elements @code{-1 / @var{n}}, @code{1 / @var{n}},
## divided by @var{n}.
##
## On output, @var{nest} is the desired estimate, @var{v} and @var{w}
## are vectors such that @code{@var{w} = @var{A} * @var{v}}, with
## @code{norm (@var{w}, 1)} = @code{@var{c} * norm (@var{v}, 1)}. @var{iter}
## contains in @code{@var{iter}(1)} the number of iterations (the maximum is
## hardcoded to 5) and in @code{@var{iter}(2)} the total number of products
## @code{@var{A} * @var{x}} or @code{@var{A}' * @var{x}} performed by the
## algorithm.
##
## Algorithm Note: @code{normest1} uses random numbers during evaluation.
## Therefore, if consistent results are required, the @qcode{"state"} of the
## random generator should be fixed before invoking @code{normest1}.
##
## Reference: @nospell{N. J. Higham and F. Tisseur},
## @cite{A block algorithm for matrix 1-norm estimation, with and
## application to 1-norm @nospell{pseudospectra}},
## @nospell{SIAM J. Matrix Anal.@: Appl.@:},
## pp.@: 1185--1201, Vol 21, No.@: 4, 2000.
##
## @seealso{normest, norm, cond, condest}
## @end deftypefn
## Ideally, we would set t and X to their default values but Matlab
## compatibility would require we set the default even when they are empty.
function [nest, v, w, iter] = normest1 (A, t = [], x0 = [], varargin)
if (nargin < 1)
print_usage ();
endif
if (isempty (t))
t = 2;
endif
## FIXME: t < 0 should print trace information
if (isnumeric (A) && issquare (A))
Aismat = true;
Aisreal = isreal (A);
n = rows (A);
if (n <= 4 || t == n)
## small input, compute directly
[nest, idx] = max (sum (abs (A), 1), [] , 2);
v = zeros (n, 1);
v(idx) = 1;
w = A(:, idx);
## Matlab incompatible on purpose. Matlab returns iter as a row vector
## for this special case, but a column vector in all other cases.
## This is obviously a bug in Matlab that we don't reproduce.
iter = [0; 1];
return;
endif
elseif (is_function_handle (A))
Aismat = false;
Aisreal = A ("real", [], varargin{:});
n = A ("dim", [], varargin{:});
Afcn = @(x) A ("notransp", x, varargin{:});
A1fcn = @(x) A ("transp", x, varargin{:});
else
error ("normest1: A must be a square matrix or a function handle");
endif
t = min (t, n);
if (isempty (x0))
X = [ones(n, 1), sign(2 * rand(n, t - 1) - 1)];
i = 2;
imax = min (t, 2^(n-1));
## There are at most 2^(n-1) unparallel columns, see later.
while (i <= imax)
if (any (abs (X(:,i)' * X(:,1:i-1)) == n))
## column i is parallel to a column 1:i-1. Change it.
X(:,i) = sign (2 * rand (n, 1) - 1);
else
i++;
endif
endwhile
X /= n;
else
if (columns (x0) < t)
error ("normest1: X0 must have %d columns", t);
endif
X = x0;
endif
itmax = 5;
idx_hist = zeros (n, 1);
nest_old = 0;
idx = zeros (n, 1);
S = zeros (n, t);
iter = [0; 0];
converged = false;
while (! converged && (iter(1) < itmax))
iter(1)++;
if (Aismat)
Y = A * X;
else
Y = Afcn (X);
endif
iter(2)++;
[nest, j] = max (sum (abs (Y), 1), [], 2);
if ((nest > nest_old) || (iter(1) == 2))
idx_best = idx(j);
w = Y(:, j); # there is an error in Algorithm 2.4
endif
if (nest <= nest_old && iter(1) >= 2) # (1) of Algorithm 2.4
nest = nest_old;
break; # while
endif
nest_old = nest;
Sold = S;
S = sign (Y);
S(S==0) = 1;
possible_break = false;
if (Aisreal)
## test parallel (only real case)
if (all (any (abs (Sold' * S) == n))) # (2) of Algorithm 2.4
## all columns of S parallel to a column of Sold, exit
possible_break = true;
converged = true;
else
if (t > 1)
## at least two columns of S are not parallel
i = 1;
## The maximum number of unparallel columns of length n with
## entries {-1,1} is 2^(n-1). n of them are already in Sold.
imax = min (t, 2 ^ (n - 1) - n);
while (i <= imax)
if (any (abs (S(:,i)' * S(:,1:i-1)) == n)
|| any (abs (S(:,i)' * Sold) == n))
## i-th column of S is parallel to a previous column
## or to a column of Sold. Change it.
S(:,i) = sign (2*rand (n, 1)-1);
else
i++;
endif
endwhile
endif
endif
endif
if (! possible_break)
if (Aismat)
Z = A' * S;
else
Z = A1fcn (S); # (3) of Algorithm 2.4
endif
iter(2)++;
h = max (abs (Z), [], 2);
idx = (1:n)';
if (iter(1) >= 2 && (max (h, [], 1) == h(idx_best))) # (4) of Alg. 2.4
break; # while
endif
[h, idx] = sort (h, "descend");
if (t > 1)
if (all (idx_hist(idx(1:t)))) # (5) of Algorithm 2.4
break; # while
endif
idx = idx(! idx_hist(idx));
## length(idx) could be less than t, especially if t is not << n.
## This is not considered in point (5) of Algorithm 2.4.
tmax = min (numel (idx), t);
idx = idx(1:tmax);
else
tmax = 1;
endif
X = zeros (n, tmax);
X(sub2ind (size (X), idx(1:tmax), (1:tmax)')) = 1;
idx_hist(idx(1:tmax)) = 1;
endif
endwhile
v = zeros (n, 1);
v(idx_best) = 1;
endfunction
%!function z = afcn_A (flag, x, A, n)
%! switch (flag)
%! case {"dim"}
%! z = n;
%! case {"real"}
%! z = isreal (A);
%! case {"transp"}
%! z = A' * x;
%! case {"notransp"}
%! z = A * x;
%! endswitch
%!endfunction
%!function z = afcn_A_P (flag, x, A, m)
%! switch (flag)
%! case "dim"
%! z = length (A);
%! case "real"
%! z = isreal (A);
%! case "transp"
%! z = x; for i = 1:m, z = A' * z;, endfor
%! case "notransp"
%! z = x; for i = 1:m, z = A * z;, endfor
%! endswitch
%!endfunction
%!test
%! A = reshape ((1:16)-8, 4, 4);
%! assert (normest1 (A), norm (A, 1), eps);
## test t=1
%!test
%! A = rand (4); # for positive matrices always work
%! assert (normest1 (A, 1), norm (A,1), 2 * eps);
## test t=3
%!test
%! A = [-0.21825 0.16598 0.19388 0.75297
%! -1.47732 0.78443 -1.04254 0.42240
%! 1.39857 -0.34046 2.28617 0.68089
%! 0.31205 1.50529 -0.75804 -1.22476];
%! X = [1,1,-1;1,1,1;1,1,-1;1,-1,-1]/3;
%! assert (normest1 (A, 3, X), norm (A, 1), 2 * eps);
## test Afcn
%!test
%! A = rand (10);
%! n = length (A);
%! Afcn = @(flag, x) afcn_A (flag, x, A, n);
%! assert (normest1 (Afcn), norm (A, 1), 2 * eps);
## test Afcn with parameters
%!test
%! A = rand (10);
%! assert (normest1 (@afcn_A_P, [], [], A, 3), norm (A ^ 3, 1), 1000 * eps);
## test output
%!test
%! A = reshape (1:16,4,4);
%! [nest, v, w, iter] = normest1 (A);
%! assert (norm (w, 1), nest * norm (v, 1), eps);
## test output
%!test
%! A = rand (100);
%! A(A <= 1/3) = -1;
%! A(A > 1/3 & A <= 2/3) = 0;
%! A(A > 2/3) = 1;
%! [nest, v, w, iter] = normest1 (A, 10);
%! assert (w, A * v, eps);
%!test
%! A = rand (5);
%! nest = normest1 (A, 6);
%! assert (nest, norm (A,1), eps);
%!test
%! A = rand (5);
%! nest = normest1 (A, 2, ones (5, 2) / 5);
%! assert (nest, norm (A,1), eps);
%!test
%! N = 10;
%! A = ones (N);
%! [nm1, v1, w1] = normest1 (A);
%! [nminf, vinf, winf] = normest1 (A', 6);
%! assert (nm1, N, -2*eps);
%! assert (nminf, N, -2*eps);
%! assert (norm (w1, 1), nm1 * norm (v1, 1), -2*eps);
%! assert (norm (winf, 1), nminf * norm (vinf, 1), -2*eps);
%!test
%! N = 5;
%! A = hilb (N);
%! [nm1, v1, w1] = normest1 (A);
%! [nminf, vinf, winf] = normest1 (A', 6);
%! assert (nm1, norm (A, 1), -2*eps);
%! assert (nminf, norm (A, inf), -2*eps);
%! assert (norm (w1, 1), nm1 * norm (v1, 1), -2*eps);
%! assert (norm (winf, 1), nminf * norm (vinf, 1), -2*eps);
## Only likely to be within a factor of 10.
%!test
%! old_state = rand ("state");
%! unwind_protect
%! rand ("state", 42); # Initialize to guarantee reproducible results
%! N = 100;
%! A = rand (N);
%! [nm1, v1, w1] = normest1 (A);
%! [nminf, vinf, winf] = normest1 (A', 6);
%! assert (nm1, norm (A, 1), -.1);
%! assert (nminf, norm (A, inf), -.1);
%! assert (norm (w1, 1), nm1 * norm (v1, 1), -2*eps);
%! assert (norm (winf, 1), nminf * norm (vinf, 1), -2*eps);
%! unwind_protect_cleanup
%! rand ("state", old_state);
%! end_unwind_protect
## Check ITER is always a column vector.
%!test
%! [~, ~, ~, it] = normest1 (rand (3), 3);
%! assert (iscolumn (it));
%! [~, ~, ~, it] = normest1 (rand (50), 20);
%! assert (iscolumn (it));
## Test input validation
%!error <Invalid call> normest1 ()
%!error <A must be a square matrix or a function handle> normest1 ({1})
%!error <A must be a square matrix> normest1 ([1 2])
%!error <X0 must have 2 columns> normest1 (magic (5), :, [1])
|