1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
########################################################################
##
## Copyright (C) 2018-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {@var{lambda} =} ordeig (@var{A})
## @deftypefnx {} {@var{lambda} =} ordeig (@var{A}, @var{B})
## Return the eigenvalues of quasi-triangular matrices in their order of
## appearance in the matrix @var{A}.
##
## The quasi-triangular matrix @var{A} is usually the result of a Schur
## factorization. If called with a second input @var{B} then the generalized
## eigenvalues of the pair @var{A}, @var{B} are returned in the order of
## appearance of the matrix @code{@var{A}-@var{lambda}*@var{B}}. The pair
## @var{A}, @var{B} is usually the result of a QZ decomposition.
##
## @seealso{ordschur, ordqz, eig, schur, qz}
## @end deftypefn
function lambda = ordeig (A, B)
if (nargin < 1)
print_usage ();
endif
if (! isnumeric (A) || ! issquare (A))
error ("ordeig: A must be a square matrix");
endif
n = length (A);
if (nargin == 1)
B = eye (n);
if (isreal (A))
if (! is_quasitri (A))
error ("ordeig: A must be quasi-triangular (i.e., upper block triangular with 1x1 or 2x2 blocks on the diagonal)");
endif
else
if (! istriu (A))
error ("ordeig: A must be upper-triangular when it is complex");
endif
endif
else
if (! isnumeric (B) || ! issquare (B))
error ("ordeig: B must be a square matrix");
elseif (length (B) != n)
error ("ordeig: A and B must be the same size");
endif
if (isreal (A) && isreal (B))
if (! is_quasitri (A) || ! is_quasitri (B))
error ("ordeig: A and B must be quasi-triangular (i.e., upper block triangular with 1x1 or 2x2 blocks on the diagonal)");
endif
else
if (! istriu (A) || ! istriu (B))
error ("ordeig: A and B must both be upper-triangular if either is complex");
endif
endif
endif
## Start of algorithm
lambda = zeros (n, 1);
i = 1;
while (i <= n)
if (i == n || (A(i+1,i) == 0 && B(i+1,i) == 0))
lambda(i) = A(i,i) / B(i,i);
else
a = B(i,i) * B(i+1,i+1);
b = - (A(i,i) * B(i+1,i+1) + A(i+1,i+1) * B(i,i));
c = A(i,i) * A(i+1,i+1) - ...
(A(i,i+1) - B(i,i+1)) * (A(i+1,i) - B(i+1,i));
if (b > 0)
lambda(i) = 2*c / (-b - sqrt (b^2 - 4*a*c));
i += 1;
lambda(i) = (-b - sqrt (b^2 - 4*a*c)) / 2 / a;
else
lambda(i) = (-b + sqrt (b^2 - 4*a*c)) / 2 / a;
i += 1;
lambda(i) = 2*c / (-b + sqrt (b^2 - 4*a*c));
endif
endif
i += 1;
endwhile
endfunction
## Check whether a matrix is quasi-triangular
function retval = is_quasitri (A)
if (length (A) <= 2)
retval = true;
else
v = diag (A, -1) != 0;
retval = (all (tril (A, -2)(:) == 0) && all (v(1:end-1) + v(2:end) < 2));
endif
endfunction
%!test
%! A = toeplitz ([0, 1, 0, 0], [0, -1, 0, 0]);
%! T = schur (A);
%! lambda = ordeig (T);
%! assert (lambda, [1.61803i; -1.61803i; 0.61803i; -0.61803i], 1e-4);
%!test
%! A = toeplitz ([0, 1, 0, 0], [0, -1, 0, 0]);
%! B = toeplitz ([0, 0, 0, 1], [0, -1, 0, 2]);
%! [AA, BB] = qz (A, B, 'real');
%! assert (isreal (AA) && isreal (BB));
%! lambda = ordeig (AA, BB);
%! assert (lambda, [0.5+0.86603i; 0.5-0.86603i; i; -i], 1e-4);
%! [AA, BB] = qz (A, B, 'complex');
%! assert (iscomplex (AA) && iscomplex (BB));
%! lambda = ordeig (AA, BB);
%! assert (lambda, diag (AA) ./ diag (BB));
## Check trivial 1x1 case
%!test <*55779>
%! lambda = ordeig ([6], [2]);
%! assert (lambda, 3);
## Test input validation
%!error <Invalid call> ordeig ()
%!error <A must be a square matrix> ordeig ('a')
%!error <A must be a square matrix> ordeig ([1, 2, 3])
%!error <A must be quasi-triangular> ordeig (magic (3))
%!error <A must be upper-triangular> ordeig ([1, 0; i, 1])
%!error <B must be a square matrix> ordeig (1, 'a')
%!error <B must be a square matrix> ordeig (1, [1, 2])
%!error <A and B must be the same size> ordeig (1, ones (2,2))
%!error <A and B must be quasi-triangular>
%! ordeig (triu (magic (3)), magic (3))
%!error <A and B must both be upper-triangular>
%! ordeig ([1, 1; 0, 1], [1, 0; i, 1])
|