1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
########################################################################
##
## Copyright (C) 1993-2024 The Octave Project Developers
##
## See the file COPYRIGHT.md in the top-level directory of this
## distribution or <https://octave.org/copyright/>.
##
## This file is part of Octave.
##
## Octave is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.
##
########################################################################
## -*- texinfo -*-
## @deftypefn {} {[@var{aa}, @var{bb}, @var{q}, @var{z}] =} qzhess (@var{A}, @var{B})
## Compute the Hessenberg-triangular decomposition of the matrix pencil
## @code{(@var{A}, @var{B})}, returning
## @code{@var{aa} = @var{q} * @var{A} * @var{z}},
## @code{@var{bb} = @var{q} * @var{B} * @var{z}}, with @var{q} and @var{z}
## orthogonal.
##
## For example:
##
## @example
## @group
## [aa, bb, q, z] = qzhess ([1, 2; 3, 4], [5, 6; 7, 8])
## @result{} aa =
## -3.02244 -4.41741
## 0.92998 0.69749
## @result{} bb =
## -8.60233 -9.99730
## 0.00000 -0.23250
## @result{} q =
## -0.58124 -0.81373
## -0.81373 0.58124
## @result{} z =
## Diagonal Matrix
## 1 0
## 0 1
## @end group
## @end example
##
## The Hessenberg-triangular decomposition is the first step in
## @nospell{Moler and Stewart's} QZ@tie{}decomposition algorithm.
##
## Algorithm taken from @nospell{Golub and Van Loan},
## @cite{Matrix Computations, 2nd edition}.
##
## @seealso{lu, chol, hess, qr, qz, schur, svd}
## @end deftypefn
function [aa, bb, q, z] = qzhess (A, B)
if (nargin != 2)
print_usage ();
endif
[na, ma] = size (A);
[nb, mb] = size (B);
if (na != ma || na != nb || nb != mb)
error ("qzhess: incompatible dimensions");
endif
## Reduce to hessenberg-triangular form.
[q, bb] = qr (B);
aa = q' * A;
q = q';
z = eye (na);
for j = 1:(na-2)
for i = na:-1:(j+2)
## disp (["zero out aa(", num2str(i), ",", num2str(j), ")"])
rot = givens (aa (i-1, j), aa (i, j));
aa((i-1):i, :) = rot *aa((i-1):i, :);
bb((i-1):i, :) = rot *bb((i-1):i, :);
q((i-1):i, :) = rot * q((i-1):i, :);
## disp (["now zero out bb(", num2str(i), ",", num2str(i-1), ")"])
rot = givens (bb (i, i), bb (i, i-1))';
bb(:, (i-1):i) = bb(:, (i-1):i) * rot';
aa(:, (i-1):i) = aa(:, (i-1):i) * rot';
z(:, (i-1):i) = z(:, (i-1):i) * rot';
endfor
endfor
bb(2, 1) = 0.0;
for i = 3:na
bb (i, 1:(i-1)) = zeros (1, i-1);
aa (i, 1:(i-2)) = zeros (1, i-2);
endfor
endfunction
%!test
%! a = [1 2 1 3;
%! 2 5 3 2;
%! 5 5 1 0;
%! 4 0 3 2];
%! b = [0 4 2 1;
%! 2 3 1 1;
%! 1 0 2 1;
%! 2 5 3 2];
%! mask = [0 0 0 0;
%! 0 0 0 0;
%! 1 0 0 0;
%! 1 1 0 0];
%! [aa, bb, q, z] = qzhess (a, b);
%! assert (inv (q) - q', zeros (4), 2e-8);
%! assert (inv (z) - z', zeros (4), 2e-8);
%! assert (q * a * z, aa, 2e-8);
%! assert (aa .* mask, zeros (4), 2e-8);
%! assert (q * b * z, bb, 2e-8);
%! assert (bb .* mask, zeros (4), 2e-8);
%!test
%! a = [1 2 3 4 5;
%! 3 2 3 1 0;
%! 4 3 2 1 1;
%! 0 1 0 1 0;
%! 3 2 1 0 5];
%! b = [5 0 4 0 1;
%! 1 1 1 2 5;
%! 0 3 2 1 0;
%! 4 3 0 3 5;
%! 2 1 2 1 3];
%! mask = [0 0 0 0 0;
%! 0 0 0 0 0;
%! 1 0 0 0 0;
%! 1 1 0 0 0;
%! 1 1 1 0 0];
%! [aa, bb, q, z] = qzhess (a, b);
%! assert (inv (q) - q', zeros (5), 2e-8);
%! assert (inv (z) - z', zeros (5), 2e-8);
%! assert (q * a * z, aa, 2e-8);
%! assert (aa .* mask, zeros (5), 2e-8);
%! assert (q * b * z, bb, 2e-8);
%! assert (bb .* mask, zeros (5), 2e-8);
## Test input validation
%!error <Invalid call> qzhess ()
%!error <Invalid call> qzhess (1)
|